2026/02/14 06:49

1/48

re2_opcodes

Instruction Name |Length Example / Info History
00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 08-02-2024 Newly
{00} Nop 01 loxee Added
} Nop;
This bytecode is used for alignment of 1-byte
opcodes and ending Elself blocks.
01 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
{01} Evt_end 02 loxo1 08-02-2924 Newly
UCHAR zAlign; //
Always Zero (Alignment byte)
} Evt end;
This bytecode ends the current Main/Sub script.
02++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 08-02-2024 Newly
{02} Evt next 01 0x02 Added
} Evt next;
This bytecode moves to the next event in the
sequence.
03 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
2 08-02-2024 Newly
{03} Evt chain 02 UCHAR NextEventId; // Added
Event ID to chain to
} Evt chain;
This bytecode chains the current event to the
specified next event ID, allowing the script to
continue execution from the linked event.
04 7772 274+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x04
UCHAR EventlId; //
Event ID to execute 08-02-2024 Newly
{04} Evt_exec 04 UCHAR Parameterl; // Added
Parameter 1 for the event
UCHAR Parameter2; //
Parameter 2 for the event
} Evt exec;
This bytecode executes the specified event with
given parameters.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
05 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
{05} Evt kil 02 0x05 08-02-2024 Newly
UCHAR EventId; //
Event ID to terminate
} Evt Kkilt;
This bytecode terminates the specified event.
06 00 7?7 77+ +
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x06
UCHAR zAlign; // 08-02-2024 Newly
{06} Ifel_ck 04 Always Zero (Alignment byte) Added
USHORT Condition; //
Condition to check
} Ifel ck;
This bytecode checks a condition and branches
accordingly.
07 00 7?2 77+ +
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x07
UCHAR zAlign; // 08-02-2024 Newly
{07} Else_ck 04 Always Zero (Alignment byte) Added
USHORT Offset; //
Offset to jump if condition is met
} Else ck;
This bytecode specifies the offset to jump to if the
corresponding Ifel_ck condition is met.
08 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
. 0x08 08-02-2024 Newly
{08} Endif 02 UCHAR zAlign: // Added
Always Zero (Alignment byte)
} Endif;
This bytecode marks the end of an If/Elself/Else
block.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

3/48

re2_opcodes

Instruction Name

Length

Example / Info

History

{09} Sleep

04

09 7?7 77 774+ +

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x09

UCHAR DurationLow; //

Low byte of sleep duration

UCHAR DurationHigh; //
High byte of sleep duration
USHORT zAlign; //

Always Zero (Alignment bytes)

} Sleep;

This bytecode pauses script execution for the
specified duration.

08-02-2024 Newly
Added

{0A} Sleeping

03

0A 7?7 00++
typedef struct { // Ptr //
Description

UCHAR Opcode; //
Ox0A

USHORT Duration; //

Duration of sleep

} Sleeping;

This bytecode pauses script execution for the
specified duration.

08-02-2024 Newly
Added

{0B} Wsleep

01

O0B++
typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x0B
} Wsleep;

This bytecode causes the script to wait indefinitely.

08-02-2024 Newly
Added

0C++

typedef struct { // Ptr //
Description
{0C} Wsleeping 01 UCHAR Opcode; // 08_02_:5)(124 Newly
ed
0x0C
} Wsleeping;
This bytecode causes the script to wait indefinitely.
0D 00 ?? 7?2772 774+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x0D
UCHAR zAlign; //
Always Zero (Alignment byte) 08-02-2024 Newly
{OD} For 06 SHORT StartValue; // Added
Start value of the loop counter
USHORT EndValue; //

End value of the loop counter
} For;
This bytecode begins a for-loop with the specified

start and end values.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
OE 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
{OE} Next 02 |ox0E 08-02-2024 Newly
UCHAR zAlign; //
Always Zero (Alignment byte)
} Next;
This bytecode marks the end of a for-loop.
OF 00 7?7 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
OXOF
. UCHAR zAlign; // 08-02-2024 Newly
{OF} While 04 Always Zero (Alignment byte) Added
SHORT Condition; //
Condition to check
} While;
This bytecode begins a while-loop that continues as
long as the specified condition is true.
10 774++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
{10} Ewhile 02 |ox10 06-02-2024 Newly
UCHAR LoopId; // ID
of the while-loop to end
} Ewhile;
This bytecode ends the specified while-loop.
1100 7?7 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x11
UCHAR zAlign; // 08-02-2024 Newly
{11} Do 04 Always Zero (Alignment byte) Added
SHORT Condition; //
Condition to check
} Do;
This bytecode begins a do-while loop that executes
the loop body once before checking the condition.
12 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
{12} Edwhile 02 |ox12 08-02-2924 Newly
UCHAR LoopId; // ID

of the do-while loop to end
} Edwhile;
This bytecode ends the specified do-while loop.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

5/48

re2_opcodes

This bytecode ends the switch-case block.

Instruction Name |Length Example / Info History
137222 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x13
UCHAR SwitchlId; // ID
{13} Switch 04 |of the switch variable OgozzﬁﬁigNeww
USHORT DefaultOffset; //
Default offset to jump to if no case
matches
} Switch;
This bytecode begins a switch-case block with the
specified switch variable and default offset.
1477277 74++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x14
UCHAR CaseValue; //
{14} Case 06 |Value to compare with the switch 08'02"3(?54 Newly
: ed
variable
USHORT Offset; //
Offset to jump to if the case matches
} Case;
This bytecode defines a case within a switch-case
block.
15 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x15 08-02-2024 Newly
{15} Default 02 UCHAR zAlign; /7 Added
Always Zero (Alignment byte)
} Default;
This bytecode marks the default case in a switch-
case block.
16 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
{16} Eswitch 02 |ox16 08-02-2024 Newly
UCHAR zAlign; //
Always Zero (Alignment byte)
} Eswitch;

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name

Length

Example / Info

History

{17} Goto

06

17 2222?7200 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x17
UCHAR OffsetLow; //
Low byte of the offset to jump to
UCHAR OffsetHigh; //
High byte of the offset to jump to
USHORT zAlign; //
Always Zero (Alignment bytes)
} Goto;
This bytecode jumps to the specified offset within
the script.

08-02-2024 Newly
Added

{18} Gosub

02

18 77++
typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x18

UCHAR Subroutineld; // ID
of the subroutine to call
} Gosub;
This bytecode calls the specified subroutine.

08-02-2024 Newly
Added

{19} Return

02

19 77++
typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x19

UCHAR Subroutineld; // ID
of the subroutine to return from
} Return;
This bytecode returns from the specified
subroutine.

08-02-2024 Newly
Added

{1A} Break

02

1A 77+ +
typedef struct { // Ptr //
Description

UCHAR Opcode; //
Ox1A

UCHAR LooplId; // 1D
of the loop to break from
} Break;
This bytecode breaks out of the specified loop.

08-02-2024 Newly
Added

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

7/48

re2_opcodes

Instruction Name

Length

Example / Info

History

1B 00 77 77 00 77++

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x1B

UCHAR zAlignO; //

Always Zero (Alignment byte)

SHORT StartValue; // 08-02-2024 Newly
{1B} For2 06 Start value of the loop counter Added
UCHAR zAlignl; //
Always Zero (Alignment byte)
UCHAR EndValue; //
End value of the loop counter
} For2;
This bytecode begins a for-loop with the specified
start and end values.
1C++
typedef struct { // Ptr //
Description
. UCHAR Opcode; // 08-02-2024 Newly
{1C} Break_point 01 Ox1C Added
} Break point;
This bytecode sets a breakpoint for debugging
purposes.
1D 7?7?2774+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x1D
UCHAR Source; //
Source index 08-02-2024 Newly
{1D} Work_copy 04 UCHAR Destination; // Added
Destination index
UCHAR Typecast; //
Typecast operation
} Work copy;
This bytecode copies a value from the source index
to the destination index with an optional typecast.
1E++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 08-02-2024 Newly
{1E} NoplE 01 lox1E Added
} Nop;
This bytecode is used for alignment of 1-byte
opcodes and ending Elself blocks.
1F++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 08-02-2024 Newly
{1F} Nop1F 01 lox1F Added
} Nop;

This bytecode is used for alignment of 1-byte
opcodes and ending Elself blocks.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
20++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 08-02-2024 Newly
{20} Nop 01 lox20 Added
} Nop;
This bytecode is used for alignment of 1-byte
opcodes and ending Elself blocks.
21 7?7 N7 774+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x21
UCHAR Flag; //
System flag to check 08-02-2024 Newly
{21} Ck 04 UCHAR Id; // Added
Bit ID to check
UCHAR OnOff; //
On/0ff state to check
} Ck;
This bytecode checks the specified system flag and
bit ID for the given On/Off state.
227N 774+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x22
UCHAR Flag; //
System flag to set 08-02-2024 Newly
{22} Set 04 UCHAR Id; // Added
Bit ID to set
UCHAR OnOff; //
On/0ff state to set
} Set;
This bytecode sets the specified system flag and
bit ID to the given On/Off state.
23NN N N++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x23
UCHAR Flag; //
System flag to compare
{23} Cmp 06 UCHAR Operator; // 08'02',3354 Newly
: ed
Comparison operator
USHORT Value; //
Value to compare against
} Cmp;
This bytecode compares the specified system flag
with the given value using the provided
comparison operator.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

9/48

re2_opcodes

Instruction Name |Length Example / Info History
24 7 N 74+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x24
UCHAR Destination; // 08-02-2024 Newly
{24} Save 04 Destination index Added
SHORT Source; //
Source value
} Save;
This bytecode saves the specified source value to
the destination index.
2577 17 ++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x25
UCHAR Source; // 08-02-2024 Newly
{25} Copy 03 Source index Added
UCHAR Destination; //
Destination index
} Copy;
This bytecode copies the value from the source
index to the destination index.
267NN N++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x26
UCHAR Operation; //
Arithmetic operation to perform
UCHAR Operandl; //
First operand index 08-02-2024 Newly
{26} Calc 06 UCHAR Operand2; // Added
Second operand index
UCHAR Result; //
Result index
UCHAR zAlign; //
Always Zero (Alignment byte)
} Calc;
This bytecode performs the specified arithmetic
operation on the operands and stores the result.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
27 N 7 N++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x27
UCHAR Operation; //
Arithmetic operation to perform 08-02-2024 Newly
{27} Calc2 04 UCHAR Operand; // Added
Operand index
UCHAR Result; //
Result index
} Calc2;

This bytecode performs the specified arithmetic
operation on the operand and stores the result.

28++
typedef struct { // Ptr //
Description
{28} Sce rnd 01 UCHAR Opcode; //
0x28
} Sce rnd;
This bytecode generates a random value.
29 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x29 08-02-2024 Newly
UCHAR Cutsceneld; // ID Added
of the cutscene to change to
} Cut chg;
This bytecode changes the current cutscene to the
specified cutscene ID.

2A++

typedef struct { // Ptr //
Description

{2A} Cut old 01 UCHAR Opcode; //
Ox2A

} Cut old;

This bytecode reverts to the previous cutscene.

08-02-2024 Newly
Added

{29} Cut chg 02

08-02-2024 Newly
Added

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

11/48

re2_opcodes

Instruction Name

Length

Example / Info

History

2B 77NN 774+

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x2B
UCHAR Messageld; // ID
of the message to display
UCHAR DisplayTime; //
Time to display the message 08-02-2024 Newly
{2B} Message _on 06 UCHAR PositionX; /] X Added
position of the message
UCHAR PositionY; // Y
position of the message
UCHAR zAlign; //
Always Zero (Alignment byte)
} Message on;
This bytecode displays the specified message at
the given position for the specified duration.
EnnmnmnnnnnnnnININININ
7 NN++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x2C
UCHAR AotId; // ID
of the AOT (Animation Object)
{2C} Aot set 20 UCHAR AotType; // Os'ozfgj:d'\'ew'y
Type of the AOT
UCHAR Datal[1l7]; //
Data specific to the AOT
UCHAR zAlign[2]; //
Always Zero (Alignment bytes)
} Aot set;
This bytecode sets the properties of the specified
AOT.
2bmmnmnnnnnNnNINNININNINN
nnINNNININNININNINNNIINNNI N+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x2D
UCHAR Modelld; // ID
{2D} Obj_model_set 38 |of the object model 08-02i£§:dNewly
UCHAR Datal[35]; //
Data specific to the object model
UCHAR zAlign[2]; //

Always Zero (Alignment bytes)

} Obj model set;

This bytecode sets the properties of the specified
object model.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
2E?? 77+ +
typedef struct { // Ptr //
Description

UCHAR Opcode; //
Ox2E

UCHAR WorkId; // ID |08-02-2024 Newly
of the work (task) Added
UCHAR Datal; //
Data specific to the work
} Work set;
This bytecode sets the properties of the specified
work (task).

2F 7277 7+ +

{2E} Work_set 03

typedef struct { // Ptr //
Description
UCHAR Opcode; //
Ox2F
UCHAR SpeedId; // ID
{2F} Speed set 04 |of the speed setting anzzﬁﬁngeww
UCHAR SpeedValue; //
Value of the speed setting
UCHAR zAlign; //
Always Zero (Alignment byte)
} Speed set;
This bytecode sets the specified speed setting.
30++
typedef struct { // Ptr //
Description
{30} Add_speed 01 UCHAR Opcode; // 08'02',35’(124 Newly
ed
0x30
} Add speed;
This bytecode increments the speed setting.
31++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 08-02-2024 Newly
{31} Add_aspeed 01 0x31 Added

} Add aspeed;
This bytecode increments the angular speed
setting.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

13/48

re2_opcodes

Instruction Name |Length Example / Info History
RN N++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x32
UCHAR PosX[2]; // X
position (2 bytes)
{32} Pos set 08 UCHAR PosY[2]: oy 080220 Newly
— ed
position (2 bytes)
UCHAR PosZ[2]; // Z
position (2 bytes)
UCHAR zAlign; //
Always Zero (Alignment byte)
} Pos set;
This bytecode sets the position in 3D space.
BNINNININNIN N+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x33
UCHAR DirX[2]; // X
direction (2 bytes)
(33} Dir set 08 UCHAR DirY[2]; 77y |0802:2024 Newly
direction (2 bytes)
UCHAR DirZ[2]; // Z
direction (2 bytes)
UCHAR zAlign; //
Always Zero (Alignment byte)
} Dir set;
This bytecode sets the direction in 3D space.
34NN NN+H+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x34
UCHAR MemberId; // ID
of the member
UCHAR Propertyl; // 08-02-2024 Newly
{34} Member_set 04 Property 1 of the member Added
UCHAR Property2; //
Property 2 of the member
UCHAR zAlign; //

Always Zero (Alignment byte)
} Member set;

This bytecode sets the properties of the specified

member.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
3577 7++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x35
UCHAR MemberId; // ID |08-02-2024 Newly
{35} Member_set2 03 of the member Added
UCHAR Property; //

Property of the member

} Member set2;

This bytecode sets a single property of the
specified member.
3N?NNNININNINNNINN NN+

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x36

UCHAR Seld; // 1D
of the sound effect

UCHAR Volume; //
Volume of the sound effect

UCHAR Pitch; //

{36} Se on 12 |Pitch of the sound effect anzzﬁﬁngeww

UCHAR Pan; //
Pan of the sound effect

UCHAR Delay[8]; //
Delay before playing the sound effect
(8 bytes)

UCHAR zAlign; //
Always Zero (Alignment byte)
} Se on;

This bytecode plays the specified sound effect with
the given properties.
37727 7++

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x37
UCHAR Scald; // ID
of the scale
(37} Sca_id_set 04 UCHAR ScaleX; /7 x |0802:2024 Newly
ed
scale value
UCHAR ScaleY; /7Y
scale value
UCHAR zAlign; //

Always Zero (Alignment byte)
} Sca id set;
This bytecode sets the scale of the specified object.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49 15/48 re2_opcodes
Instruction Name |Length Example / Info History
3877 17++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x38
(38} FIr set 03 UCHAR FlrId; 7/ 1o 08022024 Newly
ed
of the floor
UCHAR Height; //
Height of the floor
} Flr set;
This bytecode sets the height of the specified floor.
39NN NN+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x39
UCHAR DirX[2]; // X
direction to check (2 bytes)
(39} Dir_ck 08 UCHAR DirY[2]; 77y |0802:2024 Newly
direction to check (2 bytes)
UCHAR DirZ[2]; // Z
direction to check (2 bytes)
UCHAR zAlign; //
Always Zero (Alignment byte)
} Dir ck;

This bytecode checks the direction in 3D space.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
BANINNININNININNININNININN++
typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x3A

UCHAR Esprld; // ID
of the ESPR (effect sprite)

UCHAR PosX[2]; // X
position of the effect sprite (2
bytes)

UCHAR PosY[2]; /7Y
position of the effect sprite (2
bytes)

UCHAR PosZ[2]; // Z
position of the effect sprite (2
bytes)

{3A} Sce espr on 16 UCHAR ScaleX; // X 08022$E§LNeWW
scale of the effect sprite

UCHAR ScaleY; // Y
scale of the effect sprite

UCHAR Rotation; //
Rotation of the effect sprite

UCHAR Alpha; //
Alpha transparency of the effect
sprite

UCHAR Duration[4]; //
Duration of the effect sprite (4
bytes)

UCHAR zAlign[2]; //

Always Zero (Alignment bytes)

} Sce espr on;

This bytecode activates the specified effect sprite
with the given properties.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

17/48

re2_opcodes

Instruction Name

Length

Example / Info

History

B ITNTNININIIININNININNNININNIN
nnNNNNINNNININNNN N+

typedef struct { // Ptr //
Description
UCHAR Opcode; //
Ox3B
UCHAR DoorlId; // ID
of the door
UCHAR PosX[2]; // X
position of the door (2 bytes)
UCHAR PosY[2]; /7Y
position of the door (2 bytes)
UCHAR PosZ[2]; // Z 08-02-2024 Newly
{3B} Door_aot_set 32 position of the door (2 bytes) Added
UCHAR Rotation; //
Rotation of the door
UCHAR LockStatus; //
Lock status of the door
UCHAR KeyItemld; // ID
of the key item required to unlock the
door
UCHAR zAlign[23]; //
Always Zero (Alignment bytes)
} Door aot set;
This bytecode sets the properties of the specified
door, including position, rotation, and lock status.
3C 774+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x3C 08-02-2024 Newly
{3C} Cut_auto 02 UCHAR Cutsceneld; // 1D Added
of the cutscene to automatically start
} Cut auto;
This bytecode starts the specified cutscene
automatically.
3D ?7? 7 ++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x3D
(3D} Member copy 03 UCHAR SourceMemberld; // ID |08-02-2024 Newly

of the source member

UCHAR DestinationMemberId; // ID
of the destination member
} Member_ copy;
This bytecode copies the properties from the
source member to the destination member.

Added

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name

Length

Example / Info

History

SETM?P 7N N+ +

typedef struct { // Ptr //
Description
UCHAR Opcode; //
Ox3E
UCHAR MemberId; // ID
of the member
UCHAR Property; //
Property to compare 08-02-2024 Newly
{3E} Member_cmp | 06 USHORT Value; /7 Added
Value to compare against
UCHAR ComparisonType; //
Type of comparison (e.g., equal, not
equal)
} Member cmp;
This bytecode compares the specified property of
the member with the given value using the
specified comparison type.
3F7?2 777+ 4
typedef struct { // Ptr //
Description
UCHAR Opcode; //
Ox3F
UCHAR MotionId; // ID
. of the motion to play 08-02-2024 Newly
{3F} Plc_motion 04 UCHAR Speed; // Added
Speed of the motion
UCHAR Loop; //
Loop flag (0 = no loop, 1 = loop)
} Plc motion;
This bytecode sets the specified motion to play at
the given speed with the optional loop flag.
47NN NNNTN+4+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x40
UCHAR DestX[2]; // X
destination (2 bytes)
UCHAR DestY[2]; // Y |08-02-2024 Newly
{40} Plc_dest 08 |jestination (2 bytes) Added
UCHAR DestZ[2]; // Z
destination (2 bytes)
UCHAR zAlign; //
Always Zero (Alignment byte)
} Plc dest;

This bytecode sets the destination position in 3D
space.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

19/48

re2_opcodes

Instruction Name |Length Example / Info History
4177 NNNINNIINNNIINNNINN?N+H+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x41
UCHAR NeckId; // ID
of the neck motion
UCHAR PosX[2]; // X
position of the neck motion (2 bytes)
UCHAR PosY[2]; // Y
position of the neck motion (2 bytes)
UCHAR PosZ[2]; // Z 08-02-2024 Newly
{41} Plc_neck 10 position of the neck motion (2 bytes) Added
UCHAR RotationX; // X
rotation of the neck motion
UCHAR RotationY; // Y
rotation of the neck motion
UCHAR RotationZ; // Z
rotation of the neck motion
UCHAR zAlign[4]; //
Always Zero (Alignment bytes)
} Plc neck;
This bytecode sets the specified neck motion with
the given position and rotation properties.
424+
typedef struct { // Ptr //
Description
UCHAR Opcode; // 08-02-2024 Newly
{42} PIc_ret 01 Ox42 Added
} Plc ret;
This bytecode returns control from the current
motion or behavior.
4377 1 N+ +
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x43
UCHAR Flag; //
Flag to set 08-02-2024 Newly
{43} Plc flg 04 UCHAR Value; // Added
Value to set the flag to
UCHAR zAlign; //
Always Zero (Alignment byte)
} Plc flg;

This bytecode sets the specified flag to the given
value.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
gqgnnnnnunnnnunnnnnnnnnnnnnnn
NN+
typedef struct { // Ptr //

Description

UCHAR Opcode; //
0x44

UCHAR EmId; // ID
of the enemy or entity

UCHAR PosX[2]; // X
position (2 bytes)

UCHAR PosY[2]; /7Y
position (2 bytes)

UCHAR PosZ[2]; // Z
position (2 bytes)

UCHAR RotationX; // X |08-02-2024 Newly

{44} Sce_em _set 22 rotation Added

UCHAR RotationY; // Y
rotation

UCHAR RotationZ; // Z
rotation

UCHAR Speed; //
Movement speed

UCHAR Health; //
Health value

UCHAR zAlign[8]; //
Always Zero (Alignment bytes)
} Sce em set;
This bytecode sets the specified enemy or entity
with the given position, rotation, speed, and health
properties.
A57?7 NN N+
typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x45

UCHAR R; //
Red color value

UCHAR G; // 08-02-2024 Newly

{45} Col_chg_set 05 Green color value Added

UCHAR B; //
Blue color value

UCHAR Alpha; //
Alpha transparency value
} Col chg set;
This bytecode sets the specified color change
properties.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

21/48

re2_opcodes

Instruction Name

Length

Example / Info

History

47NN NNNINNNN N+

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x46
UCHAR AotId; // ID |08-02-2024 Newly
{46} Aot reset 10 of the AOT to reset Added
UCHAR zAlign[11]; //
Always Zero (Alignment bytes)
} Aot reset;
This bytecode resets the specified AOT to its
default state.
47 774+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
{47} Aot on 02 |ox47 Os'ozfgj:d'\'ew'y
UCHAR AotId; // ID
of the AOT to activate
} Aot on;
This bytecode activates the specified AOT.
43I NNNINNNINNNINNININN?N+H+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x48
UCHAR SuperlId; // ID
of the super effect
UCHAR PosX[2]; // X
position (2 bytes)
UCHAR PosY[2]; /7Y
position (2 bytes)
UCHAR PosZ[2]; // Z
position (2 bytes)
UCHAR ScaleX; // X 08-02-2024 Newly
{48} Super set 16 scale Added
UCHAR ScaleY; /7Y
scale
UCHAR Rotation; //
Rotation value
UCHAR Alpha; //
Alpha transparency value
UCHAR Duration[4]; //
Duration of the effect (4 bytes)
UCHAR zAlign[2]; //
Always Zero (Alignment bytes)
} Super set;

This bytecode sets the specified super effect with
the given properties.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
4ON NN N N++
typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x49

UCHAR SuperlId; // ID |08-02-2024 Newly
of the super effect to reset Added
UCHAR zAlign[7]; //
Always Zero (Alignment bytes)
} Super reset;
This bytecode resets the specified super effect to
its default state.
4A 7++
typedef struct { // Ptr //
Description
UCHAR Opcode; //

{49} Super reset 08

08-02-2024 Newly

{4A} Plc_gun 02 [Ox4A Added

UCHAR GunlId; // 1D
of the gun to equip
} Plc gun;
This bytecode equips the specified gun.
4B 7?7 774+
typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x4B

UCHAR 0ldCutId; // ID |08-02-2024 Newly
of the cutscene to replace Added

UCHAR NewCutId; // ID
of the new cutscene
} Cut replace;

This bytecode replaces the specified cutscene with
a new cutscene.

AC?I NI N 7+4+

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x4C

UCHAR Esprld; // 1D
of the effect sprite to kill

UCHAR PosX[2]; // X
position of the effect sprite (2
{4C} Sce_espr kill 05 |bytes)

UCHAR PosY[2]; // Y
position of the effect sprite (2
bytes)

UCHAR PosZ[2]; // Z
position of the effect sprite (2
bytes)

} Sce espr kill;
This bytecode kills the specified effect sprite at the
given position.

{4B} Cut _replace 03

08-02-2024 Newly
Added

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

23/48

re2_opcodes

Instruction Name

Length

Example / Info

History

{4D}
Door_model_set

22

DN NNINNNNNNNININININN
222222 22 774+

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x4D

UCHAR DoorlId; // ID
of the door model

UCHAR PosX[2]; // X
position of the door model (2 bytes)

UCHAR PosY[2]; // Y
position of the door model (2 bytes)

UCHAR PosZ[2]; // Z
position of the door model (2 bytes)

UCHAR RotationX; // X
rotation of the door model

UCHAR RotationY; // Y
rotation of the door model

UCHAR RotationZ; // Z
rotation of the door model

UCHAR ScaleX; // X
scale of the door model

UCHAR ScaleY; // Y
scale of the door model

UCHAR zAlign[12]; //

Always Zero (Alignment bytes)

} Door model set;

This bytecode sets the properties of the specified
door model with position, rotation, and scale
values.

08-02-2024 Newly
Added

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
AET?INMNITNINIINNNIINNNINNININNINN
NN+
typedef struct { // Ptr //

Description

UCHAR Opcode; //
Ox4E

UCHAR ItemId; // ID
of the item

UCHAR PosX[2]; // X
position of the item (2 bytes)

UCHAR PosY[2]; /7Y
position of the item (2 bytes)

UCHAR PosZ[2]; // Z
position of the item (2 bytes)

{4E} Item aot set 22 UCHAR RotationX;) x |08-02-2024 Newly
= - : Added

rotation of the item

UCHAR RotationY; // Y
rotation of the item

UCHAR RotationZ; // Z
rotation of the item

UCHAR ScaleX; // X
scale of the item

UCHAR ScaleY; // Y
scale of the item

UCHAR zAlign[12]; //
Always Zero (Alignment bytes)
} Item aot set;
This bytecode sets the properties of the specified
item with position, rotation, and scale values.
AF 22277 17+ 4
typedef struct { // Ptr //
Description

UCHAR Opcode; //
Ox4F

UCHAR KeyId; // 1D
of the key to check 08-02-2024 Newly

{4F} Sce_key_ck 04 UCHAR zAlign[2]; // Added

Always Zero (Alignment bytes)

USHORT Result; //
Result of the key check
} Sce key ck;
This bytecode checks if the specified key is present
and returns the result.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

25/48

re2_opcodes

Instruction Name |Length

Example / Info

History

50777777 17++

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x50
UCHAR TriggerlId; // ID
of the trigger to check 08-02-2024 Newly
{50} Sce trg _ck 04 UCHAR zAlign[2]; // Added
Always Zero (Alignment bytes)
USHORT Result; //
Result of the trigger check
} Sce trg ck;
This bytecode checks if the specified trigger is
activated and returns the result.
517772 NN 774+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x51
UCHAR BgmId; // ID
of the background music track
UCHAR Volume; //
{51} ol o 08-02-2024 Newly
Sce_bgm_control 06 =2l o /1 Added
- - Loop flag (0 = no loop, 1 = loop)
UCHAR Fadeln; //
Fade-in duration
UCHAR FadeOut; //

Fade-out duration

} Sce bgm control;

This bytecode controls the playback of the
specified background music track with volume,
loop, fade-in, and fade-out settings.

{52}
Sce_espr_control 06

52707 N 74+ +

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x52

UCHAR EsprlId; // ID
of the effect sprite

UCHAR Action; //
Action to perform (e.g., start, stop)

UCHAR PosX[2]; // X
position of the effect sprite (2
bytes)

UCHAR PosY[2]; /7Y
position of the effect sprite (2
bytes)

UCHAR PosZ[2]; // Z
position of the effect sprite (2
bytes)

} Sce espr _control;
This bytecode controls the specified effect sprite

with the given action and position settings.

08-02-2024 Newly
Added

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name

Length

Example / Info

History

537NN N++

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x53

UCHAR Fadeld; // ID
of the fade effect

UCHAR StartIntensity; //
Start intensity of the fade effect

{53} Sce_fade_set 06 UCHAR EndIntensity; // 08'02'/f£§e4d'\'ew'y
End intensity of the fade effect

UCHAR Duration; //
Duration of the fade effect

UCHAR Color; //
Color of the fade effect
} Sce fade set;

This bytecode sets the properties of the specified
fade effect with start intensity, end intensity,
duration, and color values.
S4nrnnnnnnnnunnnnnnnnnnn
NN NN++

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x54

UCHAR Espr3dId; // 1D
of the 3D effect sprite

UCHAR PosX[2]; // X
position of the 3D effect sprite (2
bytes)

UCHAR PosY[2]; /7Y
position of the 3D effect sprite (2
bytes)

UCHAR PosZ[2]; // Z
position of the 3D effect sprite (2

{54} Sce espr3d on | 22 |bytes) 08—022§225Nemny

UCHAR RotationX; // X
rotation of the 3D effect sprite

UCHAR RotationY; /7Y
rotation of the 3D effect sprite

UCHAR RotationZ; // Z
rotation of the 3D effect sprite

UCHAR ScaleX; // X
scale of the 3D effect sprite

UCHAR ScaleY; /7Y
scale of the 3D effect sprite

UCHAR zAlign[12]; //

Always Zero (Alignment bytes)

} Sce espr3d on;

This bytecode activates the specified 3D effect
sprite with the given position, rotation, and scale
values.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

27/48

re2_opcodes

Instruction Name

Length

Example / Info

History

57NN NN ++

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x55

UCHAR Operation; //
Arithmetic operation to perform

UCHAR Operandl; //
First operand index

{55} Member calc 06 UCHAR Operand2; // OsozzﬁﬁggNeww

Second operand index

UCHAR Result; //
Result index

UCHAR zAlign; //
Always Zero (Alignment byte)
} Member calc;
This bytecode performs the specified arithmetic
operation on the operands and stores the result in
a member.
56 7?7777 M ++
typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x56

UCHAR Operation; //
Arithmetic operation to perform

UCHAR Operand; //

{56} Member calc2 04 |Operand index anzzﬁﬁngeww

UCHAR Result; //
Result index

UCHAR zAlign; //

Always Zero (Alignment byte)

} Member calc2;

This bytecode performs the specified arithmetic
operation on the operand and stores the result in a
member.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name

Length

Example / Info

History

S5TnnnnNnNnnNN++

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x57
UCHAR BgmTblId; // ID
of the background music table
UCHAR TrackId[2]; // ID
of the music track (2 bytes)
UCHAR Volume; //
Volume level
{57} Sce_bgmtbl set| 08 UCHAR Loop; // 08-022ﬁg§;Nemﬂy
Loop flag (0 = no loop, 1 = loop)
UCHAR Fadeln; //
Fade-in duration
UCHAR FadeOut; //
Fade-out duration
UCHAR zAlign; //
Always Zero (Alignment byte)
} Sce bgmtbl set;
This bytecode sets the properties of the specified
background music table with track ID, volume,
loop, fade-in, and fade-out settings.
587?77 N ++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x58
UCHAR RotationX; // X
rotation value
{58} Plc_rot 04 UCHAR RotationY; /Y 08'02'A2(§)j4 Newly
. ed
rotation value
UCHAR RotationZ; // Z
rotation value
UCHAR zAlign; //
Always Zero (Alignment byte)
} Plc rot;
This bytecode sets the rotation values in 3D space.
507?77 7 ++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x59
UCHAR Xald; // ID
of the XA audio stream
UCHAR Volume; // 08-02-2024 Newly
{59} Xa_on 04 Volume level Added
UCHAR Loop; //
Loop flag (0 = no loop, 1 = loop)
UCHAR zAlign; //
Always Zero (Alignment byte)
} Xa on;
This bytecode plays the specified XA audio stream
with volume and loop settings.
https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

29/48

re2_opcodes

Instruction Name |Length Example / Info History
5A 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
Ox5A 08-02-2024 Newly
{5A} Weapon_chg 02 UCHAR WeaponId; // ID Added

of the weapon to change to

} Weapon chg;

This bytecode changes the player's weapon to the
specified weapon ID.

5B 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
{5B} Plc_cnt 02 |ex5B Os'ozfgj:d'\'ew'y
UCHAR CounterId; // ID
of the counter to increment
} Plc cnt;
This bytecode increments the specified counter.
5C?7? 17 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x5C
UCHAR Intensity; //
Intensity of the shake effect
{5C} Sce_shake on | 03 UCHAR Duration; pg | 08072024 Newly
Duration of the shake effect
UCHAR Frequency; //
Frequency of the shake effect
} Sce shake on;
This bytecode activates the screen shake effect
with the specified intensity, duration, and
frequency.
5D 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
, : 0x5D 08-02-2024 Newly
{5D} Mizu_div_set 02 UCHAR Division; // Added
Division factor for water effects
} Mizu div_set;
This bytecode sets the division factor for water
effects.
5E 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
Ox5E 08-02-2024 Newly
{5E} Keep_ltem_ck | 02 UCHAR TtemId; // 1D Added

of the item to check

} Keep Item ck;

This bytecode checks if the player has the specified
item and returns the result.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name

Length

Example / Info

History

{5F} Xa_vol

02

5F 77++
typedef struct { // Ptr //
Description

UCHAR Opcode; //
Ox5F

UCHAR Volume; //
Volume level for XA audio stream
} Xa vol;
This bytecode sets the volume level for the XA
audio stream.

08-02-2024 Newly
Added

{60} Kage_set

14

O 27?2 NINNININNININN?ININNN? NN+ +

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x60

UCHAR Kageld; //
of the shadow effect

UCHAR PosX[2]; //
position of the shadow effect (2
bytes)

UCHAR PosY[2]; //
position of the shadow effect (2
bytes)

UCHAR PosZ[2]; //
position of the shadow effect (2
bytes)

UCHAR ScaleX; //
scale of the shadow effect

UCHAR ScaleY; //
scale of the shadow effect

UCHAR Rotation; //
Rotation of the shadow effect

UCHAR Alpha; //

Alpha transparency of the shadow
effect

UCHAR Duration[4]; //
Duration of the shadow effect (4
bytes)

UCHAR zAlign[2]; //

Always Zero (Alignment bytes)
} Kage set;

ID

This bytecode sets the properties of the specified
shadow effect with position, scale, rotation, alpha,

and duration values.

08-02-2024 Newly
Added

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

31/48

re2_opcodes

Instruction Name

Length

Example / Info

History

61777777 17++

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x61
UCHAR Cutsceneld; // ID
of the cutscene to set
UCHAR EventId; // ID
of the event associated with the 08-02-2024 Newly
{61} Cut_be_set 04 cutscene Added
UCHAR Triggerld; // ID
of the trigger associated with the
cutscene
UCHAR zAlign; //
Always Zero (Alignment byte)
} Cut be set;
This bytecode sets the properties of the specified
cutscene with event and trigger associations.
62 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x62 08-02-2024 Newly
{62} Sce_ftem_lost | 02 UCHAR ItemId; // 1D Added
of the item to remove
} Sce Item lost;
This bytecode removes the specified item from the
player's inventory.
63++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 08-02-2024 Newly
{63} Plc_gun_eff 01 0x63 Added

} Plc _gun eff;
This bytecode triggers the gun effect for the
current weapon

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
ANINNININNININNINNNIINNN?N+H+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x64
UCHAR Esprld; // ID
of the effect sprite
UCHAR PosX[2]; // X
position of the effect sprite (2
bytes)
UCHAR PosY[2]; /7Y
position of the effect sprite (2
bytes)
UCHAR PosZ[2]; // Z
position of the effect sprite (2
bytes)
UCHAR ScaleX; // X |08-02-2024 Newly
{64} Sce_espr_on2 16 scale of the effect sprite Added
UCHAR ScaleY; // Y
scale of the effect sprite
UCHAR Rotation; //
Rotation of the effect sprite
UCHAR Alpha; //
Alpha transparency of the effect
sprite
UCHAR Duration[4]; //
Duration of the effect sprite (4
bytes)
UCHAR zAlign[2]; //

Always Zero (Alignment bytes)

} Sce espr on2;

This bytecode activates the specified effect sprite
with position, scale, rotation, alpha, and duration

values.
65 ?7++
typedef struct { // Ptr //
Description
UCHAR Opcode; //

08-02-2024 Newly

{65} Sce_espr kill2 02 |0x65 Added

UCHAR EspriId; // ID
of the effect sprite to kill
} Sce espr killz;
This bytecode kills the specified effect sprite.

66++
typedef struct { // Ptr //
Description
{66} Plc_stop 01 UCHAR Opcode; /) 08-02-2024 Newly
Added
0x66
} Plc _stop;

This bytecode stops the current action or motion.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

33/48

re2_opcodes

Instruction Name

Length

Example / Info

History

{67} Aot _set 4p

28

pTnnMININMMININNINNNINNNINN
NN N+

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x67

UCHAR AotId; // ID
of the AOT (Animation Object)

UCHAR PosX[2]; // X
position of the AOT (2 bytes)

UCHAR PosY[2]; /7Y
position of the AOT (2 bytes)

UCHAR PosZ[2]; // Z
position of the AOT (2 bytes)

UCHAR RotationX; // X
rotation of the AOT

UCHAR RotationY; // Y
rotation of the AOT

UCHAR RotationZ; // Z
rotation of the AOT

UCHAR ScaleX; // X
scale of the AOT

UCHAR ScaleY; // Y
scale of the AOT

UCHAR ZzAlign[16]; //
Always Zero (Alignment bytes)
} Aot _set 4p;

This bytecode sets the properties of the specified
AOT (Animation Object) with position, rotation, and
scale values.

08-02-2024 Newly
Added

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name

Length

Example / Info

History

{68}
Door_aot_set 4p

40

8T MNIMIINIINIININIINNNINININININININN?
nnnmrNINNNINNNNININNNINN

7++
typedef struct {
Description
UCHAR Opcode;
0x68
UCHAR DoorlId;
of the door
UCHAR PosX[2];
position of the door
UCHAR PosY[2];
position of the door
UCHAR PosZ[2];
position of the door
UCHAR RotationX;
rotation of the door
UCHAR RotationY;
rotation of the door
UCHAR RotationZ;
rotation of the door
UCHAR ScaleX;
scale of the door
UCHAR ScaleY;
scale of the door
UCHAR zAlign[28];

// Ptr //
//
//
//
(2 bytes)
//
(2 bytes)
//
(2 bytes)
//
//
//
//
//

//

Always Zero (Alignment bytes)

} Door aot set 4p;

ID

This bytecode sets the properties of the specified
door with position, rotation, and scale values.

08-02-2024 Newly
Added

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

35/48

re2_opcodes

Instruction Name

Length

Example / Info

History

oM nMININIMIININNINNNINNNINN
nNNNNINNNINNINNNN++

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x69

UCHAR ItemId; // ID
of the item

UCHAR PosX[2]; // X
position of the item (2 bytes)

UCHAR PosY[2]; /7Y
position of the item (2 bytes)

UCHAR PosZ[2]; // Z
position of the item (2 bytes)

o et 4 30 UCHAR RotationX; 77 x |0802:2024 Newly
- == rotation of the item

UCHAR RotationY; // Y
rotation of the item

UCHAR RotationZ; // Z
rotation of the item

UCHAR ScaleX; // X
scale of the item

UCHAR ScaleY; // Y
scale of the item

UCHAR zAlign[18]; //
Always Zero (Alignment bytes)
} Item aot set 4p;
This bytecode sets the properties of the specified
item with position, rotation, and scale values.
AT 7?7 NN NN+4+
typedef struct { // Ptr //
Description

UCHAR Opcode; //
Ox6A

UCHAR PosX[2]; // X

, position of the light (2 bytes) 08-02-2024 Newly
{6A} Light_pos_set | 06 UCHAR PosY[2]; /1Y Added

position of the light (2 bytes)

UCHAR PosZ[2]; // Z

position of the light (2 bytes)

} Light pos set;

This bytecode sets the position of the specified
light in 3D space.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
6B 7?7 7?77 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x6B
UCHAR Intensity; //
Intensity of the light
: : UCHAR Range; // 08-02-2024 Newly
{6B} Light kido_set 04 Range of the light Added
UCHAR Color; //
Color of the light
UCHAR zAlign; //

Always Zero (Alignment byte)

} Light kido_set;

This bytecode sets the intensity, range, and color
of the specified light.

6C++
typedef struct { // Ptr //
Description
. UCHAR Opcode; // 08-02-2024 Newly
{6C} Rbj _reset 01 0x6C Added
} Rbj reset;

This bytecode resets the RB) (Resident Biohazard
Jump) system to its default state.

6D 7?7 7?7 77+ +

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x6D
UCHAR PosX[2]; // X
position of the screen (2 bytes) 08-02-2024 Newly
{6D} Sce_scr_move | 04 UCHAR PosY[2]; /7Y Added
position of the screen (2 bytes)
UCHAR zAlign; //

Always Zero (Alignment byte)
} Sce scr_move;
This bytecode moves the screen to the specified
position.
GE? 7?2 NN 74+ +
typedef struct { // Ptr //
Description

UCHAR Opcode; //
OX6E

UCHAR PartlId; // 1D
of the part to set

UCHAR PosX[2]; // X 08-02-2024 Newly
position of the part (2 bytes) Added

UCHAR PosY[2]; // Y
position of the part (2 bytes)

UCHAR PosZ[2]; // Z
position of the part (2 bytes)
} Parts set;
This bytecode sets the properties of the specified
part with position values.

{6E} Parts_set 06

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

37/48

re2_opcodes

Instruction Name |Length Example / Info History
6F 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
{6F} Movie on 02 |Ox6F 08-02:3(;)dZe4dNewa
UCHAR Movield; // ID

of the movie to play
} Movie on;
This bytecode plays the specified movie.

70++

typedef struct { // Ptr //
Description
UCHAR Opcode; // 08-02-2024 Newly
{70} Splc_ret 01 0x70 Added
} Splc ret;
This bytecode returns from the current script
location.
714++
typedef struct { // Ptr //
Description
{71} Splc_sce 01 UCHAR Opcode; // 08'02'5354 Newly
ox71 ed
} Splc_sce;
This bytecode sets the specified scene.
nR2NNNNNNNINNNININNININNINN++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x72
UCHAR Superld; // 1D
of the super effect
UCHAR PosX[2]; // X
position of the super effect (2 bytes)
UCHAR PosY[2]; /7Y
position of the super effect (2 bytes)
UCHAR PosZ[2]; // Z
position of the super effect (2 bytes)
UCHAR ScaleX; // X
{72} Super_on 16 |scale of the super effect OsozzggﬁgNeww
UCHAR ScaleY; // Y
scale of the super effect
UCHAR Rotation; //
Rotation of the super effect
UCHAR Alpha; //
Alpha transparency of the super effect
UCHAR Duration[4]; //
Duration of the super effect (4 bytes)
UCHAR zAlign[2]; //
Always Zero (Alignment bytes)
} Super on;

This bytecode activates the specified super effect
with position, scale, rotation, alpha, and duration
values.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length

Example / Info

History

13NN N++

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x73
UCHAR PosX[2]; // X
position of the mirror (2 bytes)
UCHAR PosY[2]; /7Y
position of the mirror (2 bytes)
. UCHAR PosZ[2]; // Z |08-02-2024 Newly
{73} Mirror_set 08 position of the mirror (2 bytes) Added
UCHAR ScaleX; // X
scale of the mirror
UCHAR ScaleY; // Y
scale of the mirror
UCHAR Rotation; //
Rotation of the mirror
} Mirror_set;
This bytecode sets the properties of the specified
mirror with position, scale, and rotation values.
7477277 74++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x74
UCHAR Fadeld; // 1D
{74} 04 of the fade effect 08-02-2024 Newly
Sce fade adjust UCHAR Adjustment; // Added

Adjustment value for the fade effect
UCHAR zAlign[2]; //

Always Zero (Alignment bytes)

} Sce fade adjust;

This bytecode adjusts the properties of the

specified fade effect.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

39/48

re2_opcodes

Instruction Name

Length

Example / Info

History

i N

22222272 724+

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x75
UCHAR Espr3dId; // ID
of the 3D effect sprite
UCHAR PosX[2]; // X
position of the 3D effect sprite (2
bytes)
UCHAR PosY[2]; // Y
position of the 3D effect sprite (2
bytes)
UCHAR PosZ[2]; // Z
{75} 22 position of the 3D effect sprite (2 08-02-2024 Newly
Sce_espr3d_on2 bytes) Added
UCHAR RotationX; // X
rotation of the 3D effect sprite
UCHAR RotationY; // Y
rotation of the 3D effect sprite
UCHAR RotationZ; // Z
rotation of the 3D effect sprite
UCHAR ScaleX; // X
scale of the 3D effect sprite
UCHAR ScaleY; // Y
scale of the 3D effect sprite
UCHAR zAlign[12]; //
Always Zero (Alignment bytes)
} Sce espr3d on2;
This bytecode activates the specified 3D effect
sprite with position, rotation, and scale values.
76 7?7 72 774+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x76
UCHAR ItemId; // ID |08-02-2024 Newly
{76} Sce_ltem_get 03 of the item to get Added
UCHAR zAlign[2]; //

Always Zero (Alignment bytes)

} Sce Item get;

This bytecode adds the specified item to the
player's inventory.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name

Length

Example / Info

History

7777777 77++

typedef struct { // Ptr //
Description
UCHAR Opcode; //
Ox77
UCHAR Lineld; // ID
. of the line to start 08-02-2024 Newly
{77} Sce_line_start 04 UCHAR zAlign[2]: /) Added
Always Zero (Alignment bytes)
UCHAR Duration; //
Duration of the 1line
} Sce line start;
This bytecode starts the specified line with the
given duration.
I8N NN N ++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x78
UCHAR Lineld; // 1D
of the line
. . UCHAR PosX[2]; // X 08-02-2024 Newly
{78} Sce _line_main 06 position of the line (2 bytes) Added
UCHAR PosY[2]; /7Y
position of the line (2 bytes)
UCHAR zAlign[2]; //
Always Zero (Alignment bytes)
} Sce line main;
This bytecode sets the main properties of the
specified line with position values.
79++
typedef struct { // Ptr //
Description
(79} Sce_line end | 01 UCHAR Opcode; pg | 08072024 Newly
ox79 ed

} Sce line end;
This bytecode ends the specified line.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

41/48

re2_opcodes

Instruction Name

Length

Example / Info

History

{7A}
Sce_parts_bomb

16

TAT?ININNINNNINNNNINNNN? N+

typedef struct { // Ptr //
Description

UCHAR Opcode; //
OX7A

UCHAR BombId; //
of the bomb

UCHAR PosX[2]; //
position of the bomb (2 bytes)

UCHAR PosY[2]; //
position of the bomb (2 bytes)

UCHAR PosZ[2]; //
position of the bomb (2 bytes)

UCHAR ScaleX; //
scale of the bomb

UCHAR ScaleY; //
scale of the bomb

UCHAR Rotation; //
Rotation of the bomb

UCHAR Alpha; //
Alpha transparency of the bomb

UCHAR Duration[4]; //
Duration of the bomb (4 bytes)

UCHAR zAlign[2]; //

Always Zero (Alignment bytes)
} Sce parts bomb;

ID

This bytecode sets the properties of the specified
bomb with position, scale, rotation, alpha, and

duration values.

08-02-2024 Newly
Added

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length

Example / Info

History

IBR2NINNNAINNININNININNININ?NN+H+

typedef struct { // Ptr //
Description

UCHAR Opcode; //
Ox7B

UCHAR PartId; // ID

of the part to set down

UCHAR PosX[2]; // X

position of the part (2 bytes)

UCHAR PosY[2]; /7Y

position of the part (2 bytes)

UCHAR PosZ[2]; // Z

position of the part (2 bytes)

UCHAR ScaleX; // X
{7B} : 08-02-2024 Newly
Sce _parts_down S CELE o e parF Added

- - UCHAR ScaleY; // Y
scale of the part

UCHAR Rotation; //

Rotation of the part
UCHAR Alpha; //
Alpha transparency of the part
UCHAR Duration[4]; //
Duration of the part (4 bytes)
UCHAR zAlign[2]; //
Always Zero (Alignment bytes)
} Sce parts down;
This bytecode sets the properties of the specified
part with position, scale, rotation, alpha, and
duration values.
JICPNINNNN+4+
typedef struct { // Ptr //
Description

UCHAR Opcode; //

0x7C

UCHAR R; //

Red color value
UCHAR G; //
{7C} Light_color set 06 Greeﬂcﬁzéog;value - OsozgggﬁgNeww
Blue color value
UCHAR Intensity; //
Intensity of the light
UCHAR zAlign; //

Always Zero (Alignment byte)

} Light color set;

This bytecode sets the color and intensity of the
specified light.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

43/48

re2_opcodes

Instruction Name

Length

History

{7D} Light_pos_set2

06

Example / Info

iDNNINNNNN+H+
typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x7D

UCHAR PosX[21]; // X
position of the light (2 bytes)

UCHAR PosY[2]; /7Y
position of the light (2 bytes)

UCHAR PosZ[2]; //Z

position of the light (2 bytes)

} Light pos set2;

This bytecode sets the position of the specified
light in 3D space.

08-02-2024 Newly
Added

{7E} Light_kido_set2

06

TE?? 227220007 77+ +

typedef struct { // Ptr //
Description

UCHAR Opcode; //
Ox7E

UCHAR Intensity; //
Intensity of the light

UCHAR Range; //
Range of the light

UCHAR Color; //
Color of the light

UCHAR zAlign[2]; //

Always Zero (Alignment bytes)

} Light kido set2;

This bytecode sets the intensity, range, and color
of the specified light.

08-02-2024 Newly
Added

{7F}
Light_color_set2

06

TF 222222 22 22 224+

typedef struct { // Ptr //
Description

UCHAR Opcode; //
Ox7F

UCHAR R; //
Red color value

UCHAR G; //
Green color value

UCHAR B; //
Blue color value

UCHAR Intensity; //
Intensity of the light

UCHAR zAlign; //

Always Zero (Alignment byte)

} Light color set2;

This bytecode sets the color and intensity of the
specified light.

08-02-2024 Newly
Added

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
80 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x80 08-02-2024 Newly
UCHAR Volume; // Added
Volume level for the sound effect
} Se vol;
This bytecode sets the volume level for the
specified sound effect.

817777 77++

{80} Se vol 02

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x81
UCHAR ItemId; // ID |08-02-2024 Newly
{81} Sce_ltem_cmp 03 of the item to compare Added
UCHAR zAlign[2]; //

Always Zero (Alignment bytes)

} Sce Item cmp;

This bytecode compares the specified item with the
player's inventory.

82777 77++

typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x82
UCHAR TaskId; // ID |08-02-2024 Newly
{82} Sce espr_task | 03 | ¢ 1o ESPR (effect sprite) task Added
UCHAR zAlign[2]; //

Always Zero (Alignment bytes)

} Sce espr_task;

This bytecode activates the specified ESPR (effect
sprite) task

83++
typedef struct { // Ptr //
Description
{83} PIc_heal 01 UCHAR Opcode; // 08-02-2024 Newly
Added
0x83
} Plc heal;
This bytecode heals the player.
84 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
{84} St_map_hint 02 |0x84 08-02f£§:dNewly
UCHAR HintId; // 1D

of the map hint
} St map hint;
This bytecode displays the specified map hint.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49 45/48 re2_opcodes

Instruction Name |Length Example / Info History
BTN N N++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x85
UCHAR EmId; // ID
of the enemy or entity
UCHAR PosX[2]; // X 08-02-2024 Newly
{85} Sce_em_pos_ck| 06 position to check (2 bytes) Added
UCHAR PosY[2]; /7Y
position to check (2 bytes)
UCHAR zAlign[2]; //

Always Zero (Alignment bytes)

} Sce em pos ck;

This bytecode checks the position of the specified
enemy or entity.

86++
typedef struct { // Ptr //
Description
{86} Poison_ck 01 UCHAR Opcode; /) 08-02i£§4dNewly
0x86 ¢

} Poison ck;
This bytecode checks if the player is poisoned.

87++
typedef struct { // Ptr //
Description
{87} Poison_cIr 01 UCHAR Opcode; // 08'02'/3(?(124 Newly
ed
0x87
} Poison clr;
This bytecode clears the player's poison status.
8877 M7 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x88
UCHAR ItemId; // ID |08-02-2024 Newly
{88} Sce_Item_lost2 03 of the item to remove Added
UCHAR zAlign[2]; //
Always Zero (Alignment bytes)
} Sce Item lost2;
This bytecode removes the specified item from the
player's inventory.
89++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 08-02-2024 Newly
{89} Evt next2 01 0x89 Added
} Evt next2;
This bytecode moves to the next event in the
sequence.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
BAM I NN NN+4+
typedef struct { // Ptr //
Description
UCHAR Opcode; //
Ox8A
UCHAR Intensity; //
Intensity of the vibration
UCHAR Duration; //
{8A} Vib_set0 06 |Duration of the vibration 08-02:3(;)dZe4dNewa
UCHAR Frequency; //
Frequency of the vibration
UCHAR zAlign[3]; //
Always Zero (Alignment bytes)
} Vib seto0;

This bytecode sets the properties of the vibration
effect with intensity, duration, and frequency
values.
BN NN+
typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x8B

UCHAR Intensity; //
Intensity of the vibration

UCHAR Duration; //
{8B} Vib_setl 06 |Duration of the vibration

UCHAR Frequency; //
Frequency of the vibration

UCHAR zAlign[3]; //
Always Zero (Alignment bytes)
} Vib setl;
This bytecode sets the properties of the vibration
effect with intensity, duration, and frequency

08-02-2024 Newly
Added

values.
CNINNNNNN++
typedef struct { // Ptr //
Description
UCHAR Opcode; //
0x8C
UCHAR Fadeld; //
Fade ID
UCHAR StartIntensity; //
Start intensity
{8C} Vib_fade set | 08 UCHAR EndIntensity; // 08'02',33(124 Newly
. - ed
End intensity
UCHAR Duration; //
Duration
UCHAR Frequency; //
Frequency
UCHAR zAlign[2]; //

Alignment bytes
} Vib fade set;
This bytecode sets the fade effect for vibration.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

47/48

re2_opcodes

Instruction Name

Length

Example / Info

History

{8D} ltem_aot_set2

24

b N

2222222222 22 204+

typedef struct { // Ptr //
Description

UCHAR Opcode; //
0x8D

UCHAR ItemId; //
of the item

UCHAR PosX[2]; //
position of the item (2 bytes)

UCHAR PosY[2]; //
position of the item (2 bytes)

UCHAR PosZ[2]; //
position of the item (2 bytes)

UCHAR RotationX; //
rotation of the item

UCHAR RotationY; //
rotation of the item

UCHAR RotationZ; //
rotation of the item

UCHAR ScaleX; //
scale of the item

UCHAR ScaleY; //
scale of the item

UCHAR zAlign[12]; //

Always Zero (Alignment bytes)
} Item aot set2;

ID

This bytecode sets the properties of the specified
item with position, rotation, and scale values.

08-02-2024 Newly
Added

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/02 21:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Instruction Name |Length Example / Info History
BEMTMMTMTINITINNININNIINNNIINNININN?
NN ++
typedef struct { // Ptr //
Description

UCHAR Opcode; //
Ox8E

UCHAR EmId; // ID
of the enemy or entity

UCHAR PosX[2]; // X
position (2 bytes)

UCHAR PosY[2]; /7Y
position (2 bytes)

UCHAR PosZ[2]; // Z
position (2 bytes)

UCHAR RotationX; // X
rotation 08-02-2024 Newly

{8E} Sce_em_se2 | 24 UCHAR RotationY; /1Y Added

rotation

UCHAR RotationZ; // Z
rotation

UCHAR ScaleX; // X
scale

UCHAR ScaleY; /7Y
scale

UCHAR Health; //
Health value

UCHAR zAlign[12]; //
Always Zero (Alignment bytes)
} Sce em set2;
This bytecode sets the specified enemy or entity
with the given position, rotation, scale, and health
properties.

From:
https://www.classicremodification.com/ - Classic RE Modification

Permanent link:
https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

Last update: 2024/08/02 21:53

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

https://www.classicremodification.com/
https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722660830

