2026/02/14 06:49

1/48

re2_opcodes

I'SECTION UNDER CONSTRUCTION!!

Instruction Name |Length Example / Info History
00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x00 // 08-02-2024
{00} Nop 01 loxo0 Newly Added
} Nop;
This bytecode is used for alignment of 1-byte
opcodes and ending Elself blocks.
01 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x01 //
{01} Evt_end 02 |0x01 Noesv;(l);fgdz:d
UCHAR zAlign; // Always Zero
(Alignment byte)
} Evt end;
This bytecode ends the current Main/Sub script.
02++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x02 // 08-02-2024
{02} Evt_next 01 loxo2 Newly Added
} Evt next;
This bytecode moves to the next event in the
sequence.
03 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x03 //
ol 08-02-2024
{03} Evt chain 02 UCHAR NextEventId; // Event ID to
- . Newly Added
chain to
} Evt chain;
This bytecode chains the current event to the
specified next event ID, allowing the script to
continue execution from the linked event.
041D ?? 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x04 //
0x04
UCHAR datal; // Typically FF 08-02-2024
{04} Evt_exec 04 UCHAR GoSub; // Opcode for Newly Added
GoSub 0x18
UCHAR ScdlId; // Sub Script ID
to Jump to
} Evt exec;

This bytecode executes the specified event with
given parameters.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
05 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x05 //
{05} Evt kil 02 0x05 Ao
UCHAR EventId; // Event ID to y
terminate
} Evt kill;
This bytecode terminates the specified event.
06 00 SI ZE++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x06 //
0x06
UCHAR zAlign; // Always Zero 08-02-2024
{06} lIfel ck 04 (Alignment byte) Newly Added
USHORT Size; // Size of the
block to check
} Ifel ck;
This bytecode checks a condition and branches
accordingly.
07 00 SI ZE++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x07 //
0x07
UCHAR zAlign; // Always Zero 08-02-2024
{07} Else_ck 04 (Alignment byte) Newly Added
USHORT Size; // Size of the
block to check
} Else ck;
This bytecode specifies the size of the block to check
if the corresponding Ifel_ck condition is met.
08 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x08 //
. 0x08 08-02-2024
{08} Endif 02 UCHAR zAlign; // Always Zero | Newly Added
(Alignment byte)
} Endif;

This bytecode marks the end of an If/Elself/Else
block.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

3/48

re2_opcodes

Instruction Name |Length Example / Info History
09 7?7 ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x09 //
0x09
UCHAR Sleeping; // Opcode for| 08-02-2024
{09} Sleep 04 Sleeping OxO0A Newly Added
USHORT Count; // Timer /
Sleep Duration
} Sleep;
This bytecode pauses script execution for the
specified duration.
0A 7?7 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // OxO0A //
. 0x0A 08-02-2024
{OA} Sleeping 03 USHORT Count; // Timer / Newly Added
Sleep Duration
} Sleeping;
This bytecode pauses script execution for the
specified duration.
0B++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x0B //
{0B} Wsleep 01 |oxoB Noesv'v?yz'/fc?dzé‘ y
} Wsleep;
This bytecode used before 0C will wait until the
current XA sound has finished playing before
proceeding.
0C++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x0C //
{0C} Wsleeping 01 |6x6C N08'02'2024
o ewly Added
} Wsleeping;
This bytecode used after 0B will wait until the
current XA sound has finished playing before
proceeding.
0D 00?2?7222 774+ +
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x0D //
0x0D
UCHAR zAlign; // Always Zero
(Alignment byte) 08-02-2024
{0D} For 06 USHORT Size; // Size of the Newly Added
block to check
USHORT Count; // Amount of
times block is looped
} For;

This bytecode begins a for-loop with the specified
start and end values.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
OE 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // OxOE //
{OE} Next 02 |0xOE NOESV;?Z'Azé)dZ: 4
UCHAR zAlign; // Always Zero y
(Alignment byte)
} Next;
This bytecode marks the end of a for-loop.
OF 00 ?? ?772++
typedef struct { // Ptr //
Description
UCHAR Opcode; // OxOF //
OxOF
. UCHAR zAlign; // Always Zero 08-02-2024
{OF} While 04 (Alignment byte) Newly Added
SHORT Size; // Size of
the block to check
} While;
This bytecode begins a while-loop that continues as
long as the specified condition is true.
10 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x10 //
{10} Ewhile 02 |ox1e NOeSV'V?;jAZﬁ: y
UCHAR LoopId; // ID of the
while-loop to end
} Ewhile;
This bytecode ends the specified while-loop.
1100 ?? 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x11 //
0x11
UCHAR zAlign; // Always Zero 08-02-2024
{11} Do 04 (Alignment byte) Newly Added
SHORT Size; // Size of
the block to check
} Do;
This bytecode begins a do-while loop that executes
the loop body once before checking the condition.
12 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x12 //
{12} Edwhile 02 |ox12 Noesvgl?;ﬂj:d
UCHAR LoopId; // ID of the

do-while loop to end
} Edwhile;
This bytecode ends the specified do-while loop.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

5/48

re2_opcodes

Instruction Name |Length Example / Info History
13 ID SI ZE++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x13 //
0x13
: UCHAR SwitchId; // ID of the 08-02-2024
{13} Switch 04 switch variable Newly Added
USHORT Size; // Size of the
block to check
} Switch;
This bytecode begins a switch-case block with the
specified switch variable and default size.
141D ?? 7?2?22 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x14 //
0x14
UCHAR zAlign; // Always Zero
(Alignment byte) 08-02-2024
{14} Case 06 USHORT Size; // Size of the | Newly Added
block to check
USHORT CaseValue; // Value to
compare with the switch variable
} Case;
This bytecode defines a case within a switch-case
block.
15 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x15 //
0x15 08-02-2024
{15} Default 02 UCHAR zAlign; // Always Zero | Newly Added
(Alignment byte)
} Default;
This bytecode marks the default case in a switch-
case block.
16 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x16 // 08-02-2024
{16} Eswitch 02 |0x16 Newly Added

UCHAR zAlign;
(Alignment byte)
} Eswitch;

This bytecode ends the switch-case block.

// Always Zero

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
17 22?72 00 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x17 //
0x17
UCHAR Ifel ctr; // Always
OxFF (0x01 on r304-sub05, only)
UCHAR Loop ctr; // Always 08-02-2024
{17} Goto 04 OXFF (0x00 on r500-sub04 and sub07, Newly Added
only)
UCHAR zAlign; // Always 0x00
SHORT Offset; // Relative
Pointer, always references same script
} Goto;
This bytecode jumps to the specified offset within
the script.
18 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x18 //
{18} Gosub 02 |ox18 Noegvb?;fgj: y
UCHAR Subroutineld; // ID of the
subroutine to call
} Gosub;
This bytecode calls the specified subroutine.
19 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x19 //
{19} Return 02 lox19 NOeSQ?;fggj y
UCHAR Subroutineld; // ID of the
subroutine to return from
} Return;
This bytecode returns from the specified subroutine.
1A ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox1A //
{1A} Break 02 |0x1A NOESV;?Zfé)j: 4
UCHAR LooplId; // ID of the y
loop to break from
} Break;
This bytecode breaks out of the specified loop.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

7/48

re2_opcodes

Instruction Name |Length Example / Info History
1B 00 ?? 7?2 00 ??7++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x1B //
Ox1B
UCHAR zAlign@; // Always Zero
(Alignment byte)
SHORT StartValue; // Start value 08-02-2024
{1B} For2 06 of the loop counter Newly Added
UCHAR zAlignl; // Always Zero
(Alignment byte)
UCHAR EndValue; // End value
of the loop counter
} For2;
This bytecode begins a for-loop with the specified
start and end values.
1C++
typedef struct { // Ptr //
Description
. UCHAR Opcode; // 0x1C // 08-02-2024
{1C} Break_point 01 Ox1C Newly Added
} Break point;
This bytecode sets a breakpoint for debugging
purposes.
1D ?? 77 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x1D //
0x1D
UCHAR Source; // Source index| o 5 5054
{1D} Work_copy 04 indegCHAR Destination; // Destination Newly Added
UCHAR Typecast; // Typecast
operation
} Work copy;
This bytecode copies a value from the source index
to the destination index with an optional typecast.
1E++
typedef struct { // Ptr //
Description
UCHAR Opcode; // OX1E // 08-02-2024
{1E} NoplE 01 lox1E Newly Added
} NoplE;
This bytecode is used for alignment of 1-byte
opcodes and ending Elself blocks.
1F++
typedef struct { // Ptr //
Description
UCHAR Opcode; // OX1F // 08-02-2024
{1F} NoplF 01 Ox1F Newly Added
} NoplF;

This bytecode is used for alignment of 1-byte
opcodes and ending Elself blocks.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
20++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x20 // 08-02-2024
{20} Nop 01 lox20 Newly Added
} Nop;
This bytecode is used for alignment of 1-byte
opcodes and ending Elself blocks.
21 7?7 N7 74+
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x21 //
0x21
UCHAR Flag; // System flag to| (o 155004
{21} Ck 04 |check Newly Added
UCHAR Id; // Bit ID to check
UCHAR 0OnOff; // On/0ff state
to check
} Ck;
This bytecode checks the specified system flag and
bit ID for the given On/Off state.
2277 N 774+
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x22 //
0x22
UCHAR Flag; // System flag to 08-02-2024
{22} Set 04 |set Newly Added
UCHAR Id; // Bit ID to set
UCHAR 0OnOff; // On/0ff state
to set
} Set;
This bytecode sets the specified system flag and bit
ID to the given On/Off state.
237NN N N++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x23 //
0x23
UCHAR Flag; // System flag to
compare . 08-02-2024
{23} Cmp 06 UCHAR Operator; // Comparison Newly Added
operator
USHORT Value; // Value to
compare against
} Cmp;
This bytecode compares the specified system flag
with the given value using the provided comparison
operator.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49 9/48 re2_opcodes
Instruction Name |Length Example / Info History
241D 7?7?74+ +
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x24 //
(24} 5 o T Destination| 00-02-2024
ave _ estination; // Destination Newly Added
index
SHORT Source; // Source value
} Save;
This bytecode saves the specified source value to
the destination index
2577 M7 ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x25 //
{25} C ¢ | Destination| 0502-2024
opy _ estination; // Destination Newly Added
index
UCHAR Source; // Source index
} Copy;
This bytecode copies the value from the source
index to the destination index.
267?77 NN N++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x26 //
0x26
UCHAR zAlign; // Always Zero
(Alignment byte)
UCHAR Operator; // Arithmetic| 08-02-2024
{26} Calc 06 operation to perform Newly Added
UCHAR Flag; // Memory
Location to apply math to
SHORT Value; // Amount used
in operation
} Calc;
This bytecode performs the specified arithmetic
operation on the operands and stores the result.
27 7 N 774+
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x27 //
0x27
UCHAR Operator; // Arithmetic
operation to perform 08-02-2024
{27} Calc2 04 UCHAR Flag; // Memory Newly Added
Location to apply math to
UCHAR Value; // Amount used
in operation
} Calc2;

This bytecode performs the specified arithmetic
operation on the operand and stores the result.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
28++
typedef struct { // Ptr //
Description
{28} Sce_rnd 01 UCHAR Opcode; // 0x28 // 08-02-2024
Newly Added
0x28
} Sce rnd;
This bytecode generates a random value.
29 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x29 //
0x29 08-02-2024
{29} Cut_chg 02 UCHAR CutId; // ID of the camera | Newly Added
to change to
} Cut chg;

This bytecode changes the current camera to the
specified camera ID.

2A++
typedef struct { // Ptr //
Description
{2A} Cut_old 01 UCHAR Opcode; // Ox2A // N08'02'2024
ewly Added
Ox2A
} Cut old;
This bytecode reverts to the previous camera.
2B00ID ?? 2?2 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x2B //
0x2B
UCHAR Type; // Sub/Main?
UCHAR Messageld; // ID of the 08-02-2024
{2B} Message_on 06 message to display Newly Added
UCHAR zAlign; // Always Zero
(Alignment byte)
USHORT DisplayTime; // Time to

display the message
} Message on;
This bytecode displays the specified message.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

11/48

re2_opcodes

Instruction Name |Length Example / Info History
2CID?? 7?7 FL ?7? XX XX ZZ ZZ WW WW DD DD 7? ??
2277722200 00++
typedef struct { // Ptr //
Description

UCHAR Opcode; // 0x2C
CHAR Aot; // Aot
UCHAR SCE; // 1d
/* tagSCE AOT
UCHAR SAT; // Type
UCHAR nFloor; // nFloor
UCHAR Super; // Super
SHORT X; // Position
SHORT Z; // Position
USHORT W; // Size
USHORT D; // Size
*/ tagSCE AOT
USHORT Data0; // Sce Message
// byte0 777
// bytel MSG
Id
//
// Sce Flg chg
// Flag Type
// For example,
if(Ck(ROOM, 0x01, OFF))
// This variable
would be 0x0005
(26 ot se 20 I/ 08022024
// Sce Event
// Always OxO0FF
//
USHORT Datal; // Sce Message
// byte0 777
// bytel 777
//
// Sce Flg chg
// Flag Id
// For example,
if(Ck(ROOM, 0x01, OFF))

// This variable
would be 0x0001

//

// Sce Event

// byte0
Script Id Init

// bytel
Script Id Complete

//

USHORT Data2; // Sce Message
// Always OXFFFF
//
} Aot set;

// Ox00 bytes // Aot set
This bytecode sets the properties of the specified

AOT.

// 0x2C

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
DD NINNNINNININNININN
nnMNNINNININNININNINNN?NN00
00++
typedef struct { // Ptr //
Description

UCHAR Opcode; // 0x2D //
0x2D

UCHAR MD1; // MD1 File Id

UCHAR ModellId; // ID of the
object model

UCHAR Ccol old; // CC_WORK
structure

UCHAR Ccol no; // CC_WORK
structure

UCHAR Ctex old; // CC_WORK
structure

UCHAR nFloor; // Floor

UCHAR Super; //

USHORT Type; //
Global->0b model[].Type

USHORT BeFlag; //
Global->0b model[].Be flg

SHORT Attribute; //
Global->0b model[].Attribute

SHORT PosX; // X position (2
{2D} Obj_model_set 38 |bytes)

SHORT PosY; // Y position (2
bytes)

SHORT PosZ; // Z position (2
bytes)

SHORT DirX; // X
direction (2 bytes)

SHORT DirY; /7Y
direction (2 bytes)

SHORT DirZ; // Z
direction (2 bytes)

SHORT AtariOffsetX; // For
Moveable Object

SHORT AtariOffsetY; // For
Moveable Object

SHORT AtariOffsetZ; // For
Moveable Object

SHORT AtariSizeX; // For Moveable
Object

SHORT AtariSizeY; // For Moveable
Object

SHORT AtariSizeZ; // For Moveable
Object
} Obj model set;
This bytecode sets the properties of the specified
object model.

08-02-2024
Newly Added

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

13/48

re2_opcodes

Instruction Name |Length Example / Info History
2E7? 7++4
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox2E //
Ox2E
UCHAR Type; // Type of 08-02-2024
{2E} Work_set 03 Work Set to Select Newly Added
UCHAR Entity; // ID of Entity
to select
} Work set;
This bytecode sets the properties of the specified
work (task).
2FID ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox2F //
e 08-02-2024
{2F} Speed set 04 UCHAR SpeedId; // ID of the N
- ewly Added
speed setting
USHORT SpeedValue; // Value of
the speed setting
} Speed set;
This bytecode sets the specified speed setting.
30++
typedef struct { // Ptr //
Description
{30} Add_speed 01 UCHAR Opcode; // 0x30 // N08'02'2024
ewly Added
0x30
} Add speed;
This bytecode increments the speed setting.
31++
typedef struct { // Ptr //
Description
{31} Add_aspeed 01 UCHAR Opcode; // 0x31 // N08_02-2024
ewly Added
0x31
} Add aspeed;
This bytecode increments the angular speed setting.
32 00 XX XX YY YY ZZ ZZ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x32 //
0x32
UCHAR zAlign; // Always Zero
(Alignment byte)
{32} Pos_set 08 SHORT P0SX: // X position N°8'°2'2°24
ewly Added
(2 bytes)
SHORT PosY; // Y position
(2 bytes)
SHORT PosZ; // Z position
(2 bytes)
} Pos set;

This bytecode sets the position in 3D space.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
33 00 RXRX RY RY RZRZ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x33 //
0x33
UCHAR zAlign; // Always Zero
(Alignment byte)
{33} Dir set 08 SHORT DirX; /] X a2
direction (2 bytes) y
SHORT DirY; /7Y
direction (2 bytes)
SHORT DirZ; // Z
direction (2 bytes)
} Dir set;

This bytecode sets the direction in 3D space.
341D ?? 7?7 00++

typedef struct { // Ptr //

Description
UCHAR Opcode; // 0x34 //

0x34
UCHAR Destination; // Set written| 08-02-2024

{34} Member_set 04 £rom Newly Added

SHORT Source; // Memory to be

written to

} Member set;

This bytecode sets the properties of the specified

member.

351D 7?7++

typedef struct { // Ptr //

Description
UCHAR Opcode; // 0x34 //

0x34
UCHAR Destination; // Memory to 08-02-2024

{35} Member_set2 03 be written to Newly Added

UCHAR Source; // Set written

from

} Member set2;
This bytecode sets a single property of the specified
member.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

15/48

re2_opcodes

Instruction Name |Length Example / Info History
36 D722 22 XX XXYYYYZZZZ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x36 //
0x36
UCHAR Seld; // ID of the
sound effect
UCHAR Volume; // Volume of
the sound effect
SHORT data0; // Sound 08-02-2024
{36} Se_on 12 Reverberation, Work Aot/0bj No Newly Added
SHORT PosX; // X position
(2 bytes)
SHORT PosY; // Y position
(2 bytes)
SHORT PosZ; // Z position
(2 bytes)
} Se on;
This bytecode plays the specified sound effect with
the given properties.
371D ?? 2?2 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x37 //
L 08-02-2024
{37} Sca_id_set 04 UCHAR Scald; // ID of the Newlv Added
Boundary ewly €
USHORT Id; // New
Collision Height
} Sca id set;
This bytecode turns a boundary on or off.
381D ?7?7++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x38 //
0x38 08-02-2024
{38} Fir_set 03 UCHAR FlrId; // ID of the Newly Added
floor
UCHAR Flag;
} Flr _set;

This bytecode sets the height of the specified floor.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
39 RXRX RY RY RZ RZ 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x39 //
0x39
UCHAR zAlign; // Always Zero
(Alignment byte)
{39} Dir ck 08 USHORT DirX; // X direction N0e8v;/(l);-A2d0dze4 y
to check (2 bytes)
USHORT DirY; // Y direction
to check (2 bytes)
USHORT DirZ; // Z direction
to check (2 bytes)
} Dir_ck;

This bytecode checks the direction in 3D space.
3A007?7? 7?2222 2 2 XX XX YYYY ZZ ZZ DY DY++

typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox3A

UCHAR zAlign;
USHORT data0;
USHORT datal;
USHORT data2;

SHORT PosX; // X position
{3A} Sce espr on 16 (2 bytes) Noegvb(l);zb‘zo?dz:d
SHORT PosY; // Y position
(2 bytes)
SHORT PosZ; // Z position
(2 bytes)
SHORT DirY; /7Y

direction to check (2 bytes)

} Sce espr on;

This bytecode activates the specified effect sprite
with the given properties.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

17/48

re2_opcodes

} Door aot set;
This bytecode sets the properties of the specified
door, including position, rotation, and lock status.

Instruction Name |Length Example / Info History
L O I O A A o O o G & O Y O o B A A S O G O O Y O Y A A
MMM NN ?00++
typedef struct { // Ptr //
Description

UCHAR Opcode; // 0x3B //
0x3B

UCHAR AotId; // 0x01 //
Index ID

UCHAR SCE; // 0x02 //
Dummy

UCHAR SAT; // 0x03 //
Dummy

UCHAR nFloor; // 0x04 //
nFloor

UCHAR Super; // 0x05 //
Attach Function

SHORT X; // 0x06 // X
Position

SHORT Z; // 0x08 // Z
Position

USHORT W; // Ox0A //
X/Z Width

USHORT D; // 0x0C // Y
Width

SHORT Next pos Xx; // OxOE // X
coordinates in next room

SHORT Next pos y; // 0x10 /7Y

{3B} Door aot_set 32 |coordinates in next room &Etﬁf;ﬁggz

SHORT Next pos z; // 0x12 // Z
coordinates in next room

SHORT Next cdir y; // 0x14 //
Rotation in next room

UCHAR Next stage; // 0x16 //
Next room Stage

UCHAR Next room; // Ox17 //
Next room Number

UCHAR Next cut; // 0x18 //
Next room amera angle

UCHAR Next nfloor; // 0x19 //
Next room Floor

UCHAR Dtex type; // Ox1A //
Door Type

UCHAR Door type; // Ox1B //
D02 Animation Set

UCHAR Knock type; // 0x1C //
Dummy

UCHAR Key id; // 0x1D //
Lock Flag

UCHAR Key type; // OX1E //
Key Required

UCHAR Free; // Ox1F //
Dummy

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
3CID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x3C //
it 08-02-2024
{3C} Cut auto 02 UCHAR OnOff; // Set whether Newly Added

the camera changes automatically when
hitting switch zone or not.

} Cut auto;

This bytecode starts the specified cutscene
automatically.

3D ID ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x3D
// 0x3D
CHAR DestinationId; // ID of 08-02-2024
{3D} Member_copy 03 the destination member Newly Added
CHAR SourceMemberlId; // ID of the

source member

} Member copy;

This bytecode copies the properties from the source
member to the destination member.

SE?? 7N 0+ 4+

typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox3E //
Ox3E
UCHAR zAlign;
UCHAR Flag; // System flag to
compare 08-02-2024
{3E} Member_cmp 06 UCHAR Operator; // Comparison| Newly Added
operator
SHORT Value; // Value to

compare against

} Member cmp;

This bytecode compares the specified property of
the member with the given value using the specified
comparison type.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

19/48

re2_opcodes

Instruction Name |Length Example / Info History
3FID ?? 7?7 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox3F //
Ox3F
UCHAR MotionId; // ID of the
motion to play
. UCHAR Speed; // Speed of the 08-02-2024
{3F} Plc_motion 04 motion Newly Added
UCHAR Loop; // Loop flag
(06 = no loop, 1 = loop)
UCHAR zAlign; // Always Zero
(Alignment byte)
} Plc_motion;
This bytecode sets the specified motion to play at
the given speed with the optional loop flag.
40 00 ?? 2?2 XX XX ZZ ZZ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x40 //
0x40
UCHAR zAlign; // Always Zero
(Alignment byte)
UCHAR Animation; // EDD/EMR 08-02-2024
{40} Plc_dest 08 |Id Newly Added
UCHAR Bit; //
Room flg
SHORT X;
SHORT Z; //
Destination
} Plc dest;
This bytecode sets the destination position in 3D
space.
41 ID XX XXYYYY ZZ ZZ?7? 17 ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x41 //
0x41
UCHAR NeckId; // ID of the
neck motion
SHORT PosX; // X position of
the neck motion (2 bytes) 08-02-2024
{41} Plc_neck 10 SHORT PosY; // Y position of | Newly Added
the neck motion (2 bytes)
SHORT PosZ; // Z position of

the neck motion (2 bytes)
UCHAR SpeedX;
UCHAR SpeedZ;
} Plc neck;
This bytecode sets the specified neck motion with
the given position and rotation properties.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
42++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x42 // 08-02-2024
{42} Plc_ret 01 0x42 Newly Added
} Plc ret;

This bytecode returns control from the current
motion or behavior.

4377 77 00++

typedef struct { // Ptr //

Description
UCHAR Opcode; // 0x43 //

0x43 08-02-2024

{43} Plc_flg 04 UCHAR Type; // Newly Added

USHORT Flag; //

} Plc flg;

This bytecode sets the specified flag to the given

value.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49 21/48 re2_opcodes
Instruction Name |Length Example / Info History
4annnnnnnnnnnnnnnnnNnnNN
NN N++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x44 //
0x44
UCHAR Nop; // 0x01 //
0x00
CHAR EmId; // SCE Index
ID of the enemy or entity
UCHAR EMD; // EMD File to
load
UCHAR Animation //
UCHAR AI Related //
UCHAR nFloor; // nFloor
UCHAR Soundbank //
UCHAR Texture // Texture
selector for EM1F
{44} Sce_em set 22 UCHAR Flag // Enemy Flag &Etﬁzzgggg
USHORT PosX; // X position (2 y
bytes)
USHORT PosY; // Y position (2
bytes)
USHORT PosZ; // Z position (2
bytes)
UCHAR RotationX; // X rotation
UCHAR Speed; // Movement
speed
UCHAR Animation # //
UCHAR Anim Block //
UCHAR Anim Execution//
UCHAR zAlign; // Always Zero
(Alignment bytes)
} Sce em set;
This bytecode sets the specified enemy or entity
with the given position, rotation, speed, and health
properties.
45 77 77 77 17+ +
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x45 //
0x45
UCHAR R; // Red color value 08-02-2024
{45} Col chg_set 05 UCHAR G; // Green color value Newlv Added
UCHAR B; // Blue color value y

UCHAR Alpha;
transparency value
} Col chg set;

This bytecode sets the specified color change
properties.

// Alpha

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
46 1D 00 00 00 00 00 00 00 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x46 //
0x46
UCHAR AotId; // ID of the AOT
to reset
UCHAR SCE; 08-02-2024
{46} Aot reset 10 UCHAR SAT; // Scenario Newly Added
Atari
SHORT Data0;
SHORT Datal;
SHORT Data2;
} Aot reset;
This bytecode resets the specified AOT to its default
state.
47 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x47 //
{47} Aot on 02 |0x47 Noegvb?;fgj: y
CHAR AotId; // ID of the AOT
to activate
} Aot on;
This bytecode activates the specified AOT.
48 ID XX XX YYYY ZZ ZZ RXRY RZ ?? 72?2 2?2 00
00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x48 //
0x48
UCHAR Superld; // ID of the
super effect
USHORT PosX; // X position (2
bytes)
USHORT PosY; // Y position (2
bytes)
USHORT PosZ; // Z position (2
{48} Super set 16 |bytes) &Eﬁﬁiiﬁgﬁg
UCHAR ScaleX; // X scale
UCHAR ScaleY; // Y scale

UCHAR Rotation;
value
UCHAR Alpha;
transparency value
ULONG Duration;
of the effect (4 bytes)
UCHAR zAlign[2];
(Alignment bytes)
} Super set;

the given properties.

// Rotation
// Alpha
// Duration

// Always Zero

This bytecode sets the specified super effect with

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

23/48

re2_opcodes

Instruction Name |Length Example / Info History
491D 00 00 00 00 00 00 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x49 //
0x49
UCHAR Superld; // ID of the 08-02-2024
{49} Super_reset 08 super effect to reset Newly Added
UCHAR zAlign[7]; // Always Zero
(Alignment bytes)
} Super reset;
This bytecode resets the specified super effect to its
default state.
4A ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox4A //
{4A} Plc_gun 02 |0x4A Noegvb?;fgj: y
UCHAR GunId; // ID of the gun
to equip
} Plc gun;
This bytecode equips the specified gun.
4B ?? ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x4B //
0x4B
UCHAR 0ldCutId; // ID of the 08-02-2024
{4B} Cut_replace 03 cutscene to replace Newly Added
UCHAR NewCutId; // ID of the
new cutscene
} Cut replace;
This bytecode replaces the specified cutscene with a
new cutscene.
ACID XX XXYYYY ZZ ZZ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x4C //
0x4C
UCHAR Esprld; // ID of the
effect sprite to kill
: USHORT PosX; // X position of| 08-02-2024
{4C} Sce_espr kil 05 the effect sprite (2 bytes) Newly Added
USHORT PosY; // Y position of
the effect sprite (2 bytes)
USHORT PosZ; // Z position of

the effect sprite (2 bytes)
} Sce espr kill;
This bytecode kills the specified effect sprite at the

given position.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
ADID XX XXYYYY ZZZZRXRYRZ?2? 2?2?2272 7 77
00 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x4D //
0x4D
UCHAR ModellId; // ID of the
door model
USHORT PosX; // X position of
the door model (2 bytes)
USHORT PosY; // Y position of
the door model (2 bytes)
USHORT PosZ; // Z position of
the door model (2 bytes) 08-02-2024
{4D} Door_model_set| 22 UCHAR RotationX; // X rotation of| Newly Added
the door model
UCHAR RotationY; // Y rotation of
the door model
UCHAR RotationZ; // Z rotation of
the door model
UCHAR Speed; // Movement
speed
UCHAR Health; // Health value
UCHAR zAlign[8]; // Always Zero

(Alignment bytes)

} Door model set;

This bytecode sets the specified door model with the
given properties.

4E ID XX XX YYYY ZZ ZZ ?? 7?7 7?7 00++

typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox4E //
Ox4E
UCHAR TrgId; // ID of the
target model
USHORT PosX; // X position of
the target model (2 bytes)
USHORT PosY; // Y position of
08-02-2024
{4E} Trg_model set 10 |the target model (2 bytes) Newlv Added
USHORT PosZ; // Z position of y
the target model (2 bytes)
UCHAR Scale; // Scale value
UCHAR Alpha; // Alpha
transparency value
UCHAR zAlign[2]; // Always Zero

(Alignment bytes)

} Trg model set;

This bytecode sets the specified target model with
the given properties.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

25/48

re2_opcodes

Instruction Name |Length Example / Info History
4F ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // OXx4F //
(4F} Plc_gun_equip | 02 |OX4F Ao
UCHAR GunlId; // ID of the gun y
to equip
} Plc gun equip;
This bytecode equips the specified gun.
50 XX XX YY YY ZZ ZZ 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x50 //
0x50
USHORT PosX; // X position to
reset to (2 bytes)
USHORT PosY; // Y position to| 08-02-2024
{50} Pos_reset 08 reset to (2 bytes) Newly Added
USHORT PosZ; // Z position to
reset to (2 bytes)
UCHAR zAlign; // Always Zero
(Alignment byte)
} Pos reset;
This bytecode resets the position to the specified
coordinates.
51 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x51 //
(51} Member hide | 02 |0x51 NOGSV'V?;]AZCEE; y
UCHAR MemberlId; // ID of the
member to hide
} Member hide;
This bytecode hides the specified member.
52 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x52 //
{52} Member_show 02 |0x52 ﬁgtﬁzjggﬁb
UCHAR MemberId; // ID of the y

member to show
} Member show;

This bytecode shows the specified member.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
537777277 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x53 //
0x53
UCHAR WorkId; // ID of the
work
UCHAR Parameterl; // Parameter 1 08-02-2024
{53} Sce_work_set 05 for the work Newly Added
UCHAR Parameter2; // Parameter 2
for the work
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce work set;
This bytecode sets the specified work with the given
parameters.
54 ID XX XX YY YY ZZ ZZ 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x54 //
0x54
UCHAR Trgld; // ID of the
target
USHORT PosX; // X position of
the target (2 bytes) 08-02-2024
{54} Sce_trg_chk 08 USHORT PosY: // Y position of| Newly Added
the target (2 bytes)
USHORT PosZ; // Z position of
the target (2 bytes)
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce trg chk;
This bytecode checks the specified target at the
given position.
551D ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x55 //
0x55
UCHAR TrglId; // ID of the
{55} Sce_trg on 04 |target éﬁ;ﬁ?iﬁﬁzg
UCHAR State; // State to set
the target to
UCHAR zAlign; // Always Zero

(Alignment byte)
} Sce trg on;

This bytecode sets the state of the specified target.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

27/48

re2_opcodes

(Alignment byte)
} Trg speed set;

This bytecode sets the speed of the specified target.

Instruction Name |Length Example / Info History
56 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x56 //
{56} Sce_trg_off 02 |0x56 ég;?zzgﬁgg
UCHAR TrgId; // ID of the y
target
} Sce trg off;
This bytecode turns off the specified target.
57 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x57 //
{57} Sce trg reset 02 |0x57 éﬁ;?zzgﬁig
UCHAR TrgId; // ID of the y
target
} Sce trg reset;
This bytecode resets the specified target.
58 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x58 //
(58} Sce_esp_off 02 |ox58 02202
UCHAR Esprld; // ID of the y
effect sprite
} Sce esp off;
This bytecode turns off the specified effect sprite.
59 1D ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x59 //
0x59
UCHAR TrglId; // ID of the 08-02-2024
{53} Trg_speed_set 04 target Newly Added
UCHAR Speed; // Speed to set
UCHAR zAlign; // Always Zero

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
S5AID XX XXYYYY ZZZZ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox5A //
Ox5A
UCHAR Esprld; // ID of the
effect sprite to copy
USHORT PosX; // X position of| 08-02-2024
{5A} Sce_espr_copy 05 the effect sprite (2 bytes) Newly Added
USHORT PosY; // Y position of
the effect sprite (2 bytes)
USHORT PosZ; // Z position of

the effect sprite (2 bytes)

} Sce espr copy;

This bytecode copies the specified effect sprite at
the given position.

5BID XX XXYYYYZZZZRXRYRZ?? P2 7?2 17?7
727777700 00++

typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x5B //
0x5B
UCHAR EmId; // ID of the
enemy or entity
USHORT PosX; // X position of
the enemy or entity (2 bytes)
USHORT PosY; // Y position of
the enemy or entity (2 bytes) 08-02-2024
{5B} Em_door set 24 USHORT PosZ; // Z position of Newly Added
the enemy or entity (2 bytes)
UCHAR RotationX; // X rotation
UCHAR RotationY; // Y rotation
UCHAR RotationZ; // Z rotation
UCHAR Speed; // Movement
speed
UCHAR Health; // Health value
UCHAR zAlign[10]; // Always Zero

(Alignment bytes)

} Em door set;

This bytecode sets the specified enemy or entity
with the given properties.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49 29/48 re2_opcodes
Instruction Name |Length Example / Info History
S5CIDmnnnnn77777700++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x5C //
0x5C
UCHAR Itemld; // ID of the
item
UCHAR Quantity; // Quantity
of the item
UCHAR Propertyl; // Property 1 of
the item
UCHAR Property2; // Property 2 of
the item
UCHAR Property3; // Property 3 of
. the item 08-02-2024
{5C} Sce_item_set 12 UCHAR Property4; // Property 4 of Newly Added
the item
UCHAR Property5; // Property 5 of
the item
UCHAR Property6; // Property 6 of
the item
UCHAR Property7; // Property 7 of
the item
UCHAR Property8; // Property 8 of
the item
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce item set;
This bytecode sets the specified item with the given
properties.
5DID 7?7 77++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x5D //
Ox5D
UCHAR ItemId; // ID of the
. item 08-02-2024
{5D} Sce_item _reset | 04 UCHAR Quantity; // Quantity | Newly Added
of the item
UCHAR zAlign; // Always Zero

(Alignment byte)

} Sce item reset;

This bytecode resets the specified item with the
given quantity.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
5E ID ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox5E //
Ox5E
UCHAR WorkId; // ID of the
{5E} Sce work_chk 04 |work &Etﬁf;gﬁgg
UCHAR State; // State to
check
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce work chk;
This bytecode checks the state of the specified work.
5FID ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox5F //
Ox5F
UCHAR WorkId; // ID of the
{5F} Sce work_on 04 |work Noegvil?;fgj: 4
UCHAR State; // State to set
the work to
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce work on;
This bytecode sets the state of the specified work.
60 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x60 //
{60} Sce_work_off 02 |ox60 Noesv'v?yz'/fc?dzé‘ y
UCHAR WorkId; // ID of the
work
} Sce work off;
This bytecode turns off the specified work.
61 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x61 //
{61} Sce work reset | 02 |0x61 >ﬁzzggiz
UCHAR WorkId; // ID of the y
work
} Sce work reset;
This bytecode resets the specified work.
62 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x62 //
{62} Sce_item off 02 |ox62 a2
UCHAR ItemId; // ID of the y
item
} Sce item off;
This bytecode turns off the specified item.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

31/48

re2_opcodes

Instruction Name |Length Example / Info History
631D ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x63 //
0x63
UCHAR Itemld; // ID of the
{63} Sce_item on 04 |item &Etﬁf;ﬁggz
UCHAR State; // State to set
the item to
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce item on;
This bytecode sets the state of the specified item.
64 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x64 //
{64} Sce_esp reset 02 |0x64 Noegvil(l);zb‘zo?dz: 4
UCHAR EspriId; // ID of the
effect sprite
} Sce esp reset;
This bytecode resets the specified effect sprite.
65 ID XX XX YY YY ZZ ZZ RX RY RZ ?? ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x65 //
0x65
UCHAR EffId; // ID of the
effect
USHORT PosX; // X position of
the effect (2 bytes)
USHORT PosY; // Y position of
the effect (2 bytes)
USHORT PosZ; // Z position of
the effect (2 bytes)
{65} Sce_eff set 12 UCHAR RotationX; // X rotation of N08'02'2024
ewly Added
the effect
UCHAR RotationY; // Y rotation of
the effect
UCHAR RotationZ; // Z rotation of
the effect
UCHAR Scale; // Scale value

UCHAR Alpha;
transparency value
UCHAR zAlign;
(Alignment byte)
} Sce eff set;
This bytecode sets the specified effect with the given
properties.

// Alpha

// Always Zero

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History

66 ID++

typedef struct { // Ptr //

Description
UCHAR Opcode; // 0x66 //

{66} Sce eff reset 02 |0x66 éﬁ;?zzgggg

UCHAR EffId; // ID of the y

effect

} Sce eff reset;
This bytecode resets the specified effect.

67 ID XX XXYYYY ZZZZ++

typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x67 //
0x67
UCHAR Trgld; // ID of the
target to copy
USHORT PosX; // X position of| 08-02-2024
{67} Sce _trg_copy 05 the target (2 bytes) Newly Added
USHORT PosY; // Y position of
the target (2 bytes)
USHORT PosZ; // Z position of

the target (2 bytes)

} Sce trg copy;

This bytecode copies the specified target at the
given position.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49 33/48 re2_opcodes
Instruction Name |Length Example / Info History
68 ID XX XXYYYYZZZZRXRYRZM? 7?2?2177
nnMmNNINNININNININNINN?N00
00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x68 //
0x68
UCHAR DoorlId; // ID of the
door
USHORT PosX; // X position of
the door (2 bytes)
USHORT PosY; // Y position of
the door (2 bytes)
USHORT PosZ; // Z position of
the door (2 bytes) 08-02-2024
{68} Door_aot_set_4p| 40 UCHAR RotationX; // X rotation of| Newly Added
the door
UCHAR RotationY; // Y rotation of
the door
UCHAR RotationZ; // Z rotation of
the door
UCHAR ScaleX; // X scale of
the door
UCHAR ScaleY; // Y scale of
the door
UCHAR zAlign[28]; // Always Zero
(Alignment bytes)
} Door_aot set 4p;
This bytecode sets the properties of the specified
door with position, rotation, and scale values.
69 ID ?7++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x69 //
0x69
- UCHAR TrgId; // ID of the 08-02-2024
{69} Trg_init 03 target to initialize Newly Added
UCHAR State; // Initial state
of the target
} Trg init;

This bytecode initializes the specified target with the
given state.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
6A RX RX RY RY RZ RZ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // OXx6A //
OXx6A
USHORT DirX; // X direction
{6A} Dir set2 06 |(2 bytes) Noesvﬁzfé)je“ y
USHORT DirY; // Y direction y
(2 bytes)
USHORT DirZ; // Z direction
(2 bytes)
} Dir set2;
This bytecode sets the direction in 3D space.
6B 77?2?2722 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0Ox6B //
0x6B
UCHAR R; // Red color value 08-02-2024
{6B} Col_set2 05 UCHAR G: // Green color value| Newly Added
UCHAR B; // Blue color value
UCHAR Alpha; // Alpha
transparency value
} Col set2;
This bytecode sets the specified color values.
6C ID XX XX YY YY ZZ ZZ RX RY RZ ?? ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x6C //
0x6C
UCHAR EffId; // ID of the
effect
USHORT PosX; // X position of
the effect (2 bytes)
USHORT PosY; // Y position of
the effect (2 bytes)
USHORT PosZ; // Z position of
the effect (2 bytes)
{6C} Sce eff on 12 UCHAR RotationX; // X rotation of N08'02'2024
ewly Added
the effect
UCHAR RotationY; // Y rotation of
the effect
UCHAR RotationZ; // Z rotation of
the effect
UCHAR Scale; // Scale value
UCHAR Alpha; // Alpha
transparency value
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce eff on;

This bytecode activates the specified effect with the
given properties.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49 35/48 re2_opcodes
Instruction Name |Length Example / Info History
6D ID XX XXYYYY ZZZZRXRYRZ?? 22?22?7277
mmmNNNININIIMNININNNNNNNMNN00
00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x6D //
0x6D
UCHAR EffId; // ID of the
effect
USHORT PosX; // X position of
the effect (2 bytes)
USHORT PosY; // Y position of
the effect (2 bytes)
USHORT PosZ; // Z position of
the effect (2 bytes) 08-02-2024
{6D} Eff_aot_set 40 UCHAR RotationX; // X rotation of| Newly Added
the effect
UCHAR RotationY; // Y rotation of
the effect
UCHAR RotationZ; // Z rotation of
the effect
UCHAR ScaleX; // X scale of
the effect
UCHAR ScaleY; // Y scale of
the effect
UCHAR zAlign[28]; // Always Zero
(Alignment bytes)
} Eff aot set;
This bytecode sets the specified effect with the given
properties.
6E 7?77?7222 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // OX6E //
OX6E
UCHAR R; // Red color value 08-02-2024
{6E} Col_set3 05 UCHAR G: // Green color value| Newly Added
UCHAR B; // Blue color value
UCHAR Alpha; // Alpha
transparency value
} Col set3;

This bytecode sets the specified color values.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
6F ID XX XXYYYYZZZZRXRYRZ?? 222?27 ?
nnnnNINININININNNNNININN00
00++
typedef struct { // Ptr //

Description
UCHAR Opcode; // OX6F //
Ox6F
UCHAR Itemld; // ID of the
item
USHORT PosX; // X position of
the item (2 bytes)
USHORT PosY; // Y position of
the item (2 bytes)
USHORT PosZ; // Z position of
the item (2 bytes) 08-02-2024
{6F} Item_aot_set 40 UCHAR RotationX; // X rotation of| Newly Added
the item
UCHAR RotationY; // Y rotation of
the item
UCHAR RotationZ; // Z rotation of
the item
UCHAR ScaleX; // X scale of
the item
UCHAR ScaleY; // Y scale of
the item
UCHAR zAlign[28]; // Always Zero
(Alignment bytes)
} Item aot set;
This bytecode sets the specified item with the given
properties.
701D ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x70 //
0x70
(70} UCHAR MemberId; // ID of the 08-02-2024
Member speed set 04 EETy Newly Added
- - UCHAR Speed; // Speed to set
UCHAR zAlign; // Always Zero
(Alignment byte)
} Member speed set;
This bytecode sets the speed of the specified
member.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

37/48

re2_opcodes

Instruction Name |Length Example / Info History
711D 7? 27++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x71 //
0x71
UCHAR Itemld; // ID of the
: item 08-02-2024
{71} Sce_item_resetz| 04 UCHAR Quantity; // Quantity | Newly Added
of the item
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce item reset2;
This bytecode resets the specified item with the
given quantity.
721D ?7? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x72 //
0x72
(72} UCHAR MemberlId; // ID of the 08-02-2024
Member scale set 04 |kt Newly Added
- - UCHAR Scale; // Scale to set
UCHAR zAlign; // Always Zero
(Alignment byte)
} Member scale set;
This bytecode sets the scale of the specified
member.
T3 XX XXYYYY ZZ ZZ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x73 //
0x73
USHORT PosX; // X position to
{73} Pos_copy 06 |copy (2 bytes) &E&gﬁ;ﬁgﬁg
USHORT PosY; // Y position to
copy (2 bytes)
USHORT PosZ; // Z position to
copy (2 bytes)
} Pos_copy;
This bytecode copies the specified position.
741D 7?7 27++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x74 //
0x74
UCHAR Itemld; // ID of the
: item 08-02-2024
{74} Sce_item_copy | 04 UCHAR Quantity; // Quantity | Newly Added
of the item
UCHAR zAlign; // Always Zero

(Alignment byte)

} Sce item copy;

This bytecode copies the specified item with the
given quantity.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History

751D 7?7 00++

typedef struct { // Ptr //

Description
UCHAR Opcode; // 0x75 //

0x75
UCHAR Itemld; // ID of the

{75} Item ck 04 |item &Eﬁﬁfzgggg

UCHAR State; // State to

check
UCHAR zAlign; // Always Zero

(Alignment byte)

} Item ck;

This bytecode checks the state of the specified item.

76 RXRX RY RY RZ RZ 00+ +

typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox76 //
0x76
USHORT DirX; // X direction
of the member (2 bytes)
. USHORT DiryY; // Y direction 08-02-2024
{76} Member_dir_set 08 of the member (2 bytes) Newly Added
USHORT DirZ; // Z direction
of the member (2 bytes)
UCHAR zAlign; // Always Zero

(Alignment byte)

} Member dir set;

This bytecode sets the direction of the specified
member.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

39/48

re2_opcodes

Instruction Name |Length Example / Info History
T7IDXXXXYYYYZZZZRXRYRZ?7? 2?22?2717 7?7
nnnnNINININININNNNNININN00
00++
typedef struct { // Ptr //

Description
UCHAR Opcode; // Ox77 //
0x77
UCHAR AotId; // ID of the AOT
USHORT PosX; // X position of
the AOT (2 bytes)
USHORT PosY; // Y position of
the AOT (2 bytes)
USHORT PosZ; // Z position of
the AOT (2 bytes)
{77} Aot_pos_set 40 UCHAR RotationX; // X rotation of 08-02-2024
- the AOT Newly Added
UCHAR RotationY; // Y rotation of
the AOT
UCHAR RotationZ; // Z rotation of
the AOT
UCHAR ScaleX; // X scale of
the AOT
UCHAR ScaleY; // Y scale of
the AOT
UCHAR zAlign[28]; // Always Zero
(Alignment bytes)
} Aot pos set;
This bytecode sets the specified AOT with the given
position, rotation, and scale properties.
78 XX XXYYYY ZZ ZZ 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x78 //
0x78
USHORT PosX; // X position (2
bytes)
{78} Pos_set2 08 USHORT PosY; // Y position (2 N08'?2'2024
s ewly Added
y
USHORT PosZ; // Z position (2
bytes)

UCHAR zAlign;
(Alignment byte)
} Pos set2;

This bytecode sets the position in 3D space.

// Always Zero

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History

79 XX XXYYYY ZZ ZZ++

typedef struct { // Ptr //

Description
UCHAR Opcode; // 0x79 //

0x79
USHORT PosX; // X position to

{79} Pos_cmp 06 |compare (2 bytes) éﬁ;?zzgggz

USHORT PosY; // Y position to y

compare (2 bytes)
USHORT PosZ; // Z position to

compare (2 bytes)

} Pos cmp;

This bytecode compares the specified position.

JAID 77++

typedef struct { // Ptr //

Description
UCHAR Opcode; // OX7A //

9x7a 08-02-2024

{7A} Sce_work _copy 03 UCHAR WorkId; // ID of the N

WEER ewly Added

UCHAR State; // State to copy

} Sce work copy;
This bytecode copies the specified work with the

given state.
IBID?2227202272 2727 2700++
typedef struct { // Ptr //
Description

UCHAR Opcode; // Ox7B //
Ox7B

UCHAR ItemId; // ID of the
item

UCHAR Quantity; // Quantity
of the item

UCHAR Propertyl; // Property 1 of
the item

UCHAR Property2; // Property 2 of
the item

UCHAR Property3; // Property 3 of

. the item 08-02-2024
{7B} Sce_item_set2 12 UCHAR Property4; // Property 4 of Newly Added

the item

UCHAR Property5; // Property 5 of
the item

UCHAR Property6; // Property 6 of
the item

UCHAR Property7; // Property 7 of
the item

UCHAR Property8; // Property 8 of
the item

UCHAR zAlign; // Always Zero

(Alignment byte)

} Sce item set2;

This bytecode sets the specified item with the given
properties.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

41/48

re2_opcodes

Instruction Name |Length Example / Info History
TCID XX XXYYYY ZZ ZZRX RY RZ ?? 77 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x7C //
0x7C
UCHAR EffId; // ID of the
effect
USHORT PosX; // X position of
the effect (2 bytes)
USHORT PosY; // Y position of
the effect (2 bytes)
USHORT PosZ; // Z position of
the effect (2 bytes)
{7C} Sce eff on2 12 UCHAR RotationX; // X rotation of 08-02-2024
- - the effect Newly Added
UCHAR RotationY; // Y rotation of
the effect
UCHAR RotationZ; // Z rotation of
the effect
UCHAR Scale; // Scale value
UCHAR Alpha; // Alpha
transparency value
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce eff on2;
This bytecode activates the specified effect with the
given properties.
7D ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox7D //
0x7D 08-02-2024
{7D} Trg_speed reset| 02 UCHAR TrgId; // ID of the Newly Added
target
} Trg speed reset;
This bytecode resets the speed of the specified
target.
JEID 7?22?27 774+ +
typedef struct { // Ptr //
Description
UCHAR Opcode; // OXT7E //
OX7E
UCHAR MemberlId; // ID of the
member
ﬁéﬁibercdorset 05 O Ji e gl walile Qﬁzﬁfggﬁﬁg
- - UCHAR G; // Green color value
UCHAR B; // Blue color value
UCHAR Alpha; // Alpha

transparency value

} Member color_set;

This bytecode sets the color values of the specified
member.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
JEID?2?2 2272 774++
typedef struct { // Ptr //
Description
UCHAR Opcode; // OXT7F //
OX7F
UCHAR Itemld; // ID of the
{7F} ==l 08-02-2024
Sce_item_color_set 05 LGRS /) el @glor wEline Newly Added
- - - UCHAR G; // Green color value
UCHAR B; // Blue color value
UCHAR Alpha; // Alpha
transparency value
} Sce item color set;
This bytecode sets the color values of the specified
item.
80ID?7? 7?2 7?77++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x80 //
0x80
UCHAR TrglId; // ID of the
target
é?gaxg color_set 05 LA 77 et enlar el éﬁ&ﬁf:ﬁﬁﬁz
- 7= - UCHAR G; // Green color value
UCHAR B; // Blue color value
UCHAR Alpha; // Alpha
transparency value
} Sce trg color set;
This bytecode sets the color values of the specified
target.
81ID 7?2277 17++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x81 //
0x81
UCHAR WorkId; // ID of the
{81} RElE 08-02-2024
Sce_work_color_set 05 LA /) et @oler el Newly Added
- - - UCHAR G; // Green color value
UCHAR B; // Blue color value
UCHAR Alpha; // Alpha
transparency value
} Sce work color_set;
This bytecode sets the color values of the specified
work.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49 43/48 re2_opcodes

Instruction Name |Length Example / Info History
82 ID XX XXYYYY ZZZZRXRYRZ 7?77 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x82 //
0x82
UCHAR EffId; // ID of the
effect to copy
USHORT PosX; // X position of
the effect (2 bytes)
USHORT PosY; // Y position of
the effect (2 bytes)
USHORT PosZ; // Z position of
the effect (2 bytes)
{82} Eff copy 12 UCHAR RotationX; // X rotation of 08-02-2024
- the effect Newly Added
UCHAR RotationY; // Y rotation of
the effect
UCHAR RotationZ; // Z rotation of
the effect
UCHAR Scale; // Scale value
UCHAR Alpha; // Alpha
transparency value
UCHAR zAlign; // Always Zero
(Alignment byte)
} Eff copy;
This bytecode copies the specified effect with the
given properties.
83 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x83 //
{83} Sce work reset2| 02 |0x83 Noegvil(l);zb‘zo?dz: 4
UCHAR WorkId; // ID of the
work
} Sce work reset2;
This bytecode resets the specified work.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53 re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
84 ID XX XXYYYY ZZZZ7??7??7??00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x84 //
0x84
UCHAR TrglId; // ID of the
target
USHORT PosX; // X position of
the target (2 bytes)
USHORT PosY; // Y position of
{84} Sce trg set 10 |the target (2 bytes) &Etﬁzzgggg
USHORT PosZ; // Z position of y
the target (2 bytes)
UCHAR Scale; // Scale value
UCHAR Alpha; // Alpha
transparency value
UCHAR zAlign[2]; // Always Zero

(Alignment bytes)

} Sce trg set;

This bytecode sets the specified target with the
given properties.

85 ID XX XXYYYY ZZ ZZ RXRY RZ 7?7 7?7 00++

typedef struct { // Ptr //
Description

UCHAR Opcode; // 0x85 //
0x85

UCHAR EffId; // ID of the
effect

USHORT PosX; // X position of
the effect (2 bytes)

USHORT PosY; // Y position of
the effect (2 bytes)

USHORT PosZ; // Z position of
the effect (2 bytes)

(85} Sce_eff ck 12 UCHAR RotationX; // X rotation of| 00022024
ewly Added

the effect

UCHAR RotationY; // Y rotation of
the effect

UCHAR RotationZ; // Z rotation of
the effect

UCHAR Scale; // Scale value

UCHAR Alpha; // Alpha
transparency value

UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce eff ck;

This bytecode checks the specified effect with the
given properties.

https://www.classicremodification.com/ Printed on 2026/02/14 06:49

2026/02/14 06:49

45/48

re2_opcodes

Instruction Name |Length Example / Info History
86 ID XX XXYYYY ZZZZ++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x86 //
0x86
UCHAR EffId; // ID of the
effect to kill
, USHORT PosX; // X position of| 08-02-2024
{86} Sce_eff kil 05 the effect (2 bytes) Newly Added
USHORT PosY; // Y position of
the effect (2 bytes)
USHORT PosZ; // Z position of
the effect (2 bytes)
} Sce eff kill,;
This bytecode kills the specified effect at the given
position.
87 ID++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x87 //
{87} Sce_eff reset 02 |0x87 &Etﬁfzgﬁﬁg
UCHAR EffId; // ID of the
effect
} Sce eff reset;
This bytecode resets the specified effect.
881D 7?7?77 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x88 //
0x88
UCHAR WorkId; // ID of the
work
UCHAR Parameterl; // Parameter 1
for the work 08-02-2024
{88} Sce_work_set2 05 UCHAR Parameter2; // Parameter 2 | Newly Added

for the work

UCHAR Parameter3;
for the work

UCHAR zAlign;
(Alignment byte)
} Sce work set2;
This bytecode sets the specified work with the given
parameters.

// Parameter 3

// Always Zero

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
891D ?? 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x89 //
0x89
UCHAR WorkId; // ID of the
{89} Sce work_ck2 04 |work &Etﬁf;ﬁgﬁg
UCHAR State; // State to
check
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce work ck2;
This bytecode checks the state of the specified work.
8A ID XX XX YY YY ZZ ZZ RXRY RZ ?? 7?7 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox8A //
Ox8A
UCHAR EffId; // ID of the
effect to copy
USHORT PosX; // X position of
the effect (2 bytes)
USHORT PosY; // Y position of
the effect (2 bytes)
USHORT PosZ; // Z position of
the effect (2 bytes) _ 08-02-2024
{8A} Sce_eff copy 12 UCHAR RotationX; // X rotation of N
the effect ewly Added
UCHAR RotationY; // Y rotation of
the effect
UCHAR RotationZ; // Z rotation of
the effect
UCHAR Scale; // Scale value
UCHAR Alpha; // Alpha
transparency value
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce eff copy;
This bytecode copies the specified effect with the
given properties.
8B ID++
typedef struct { // Ptr //
Description
(8B} UCHAR Opcode; // 0x8B // 08-02-2024
Sce work_reset3 02 |gatk Newly Added
- - UCHAR WorkId; // ID of the
work

} Sce work reset3;
This bytecode resets the specified work.

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

2026/02/14 06:49

re2_opcodes

Instruction Name |Length Example / Info History
8C ID XX XXYYYY ZZZZRXRY RZ 7?7 77 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x8C //
0x8C
UCHAR EffId; // ID of the
effect
USHORT PosX; // X position of
the effect (2 bytes)
USHORT PosY; // Y position of
the effect (2 bytes)
USHORT PosZ; // Z position of
the effect (2 bytes) . 08-02-2024
{8C} Sce eff set2 12 UCHAR RotationX; // X rotation of
- - the effect Newly Added
UCHAR RotationY; // Y rotation of
the effect
UCHAR RotationZ; // Z rotation of
the effect
UCHAR Scale; // Scale value
UCHAR Alpha; // Alpha
transparency value
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce eff set2;
This bytecode sets the specified effect with the given
properties.
8D ID 7?7?77 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // 0x8D //
0x8D
UCHAR WorkId; // ID of the
work
UCHAR Property; // Property
{8D} Sce work cmp 06 |to compare Noegvil(l)zzb‘zo?dz:d
USHORT Value; // Value to y
compare against
UCHAR ComparisonType; // Type of

comparison (e.g., equal, not equal)

} Sce work cmp;

This bytecode compares the specified property of
the work with the given value using the specified

comparison type.

Classic RE Modification - https://www.classicremodification.com/

Last update: 2024/08/03 00:53

re2_opcodes https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Instruction Name |Length Example / Info History
8E ID XX XXYYYY ZZ ZZ RXRY RZ 7?7 7?7 00++
typedef struct { // Ptr //
Description
UCHAR Opcode; // Ox8E //
Ox8E
UCHAR EffId; // ID of the
effect
USHORT PosX; // X position of
the effect (2 bytes)
USHORT PosY; // Y position of
the effect (2 bytes)
USHORT PosZ; // Z position of
the effect (2 bytes)
{8E} Sce_eff set3 12 UCHAR RotationX; // X rotation of N08'02'2024
the effect ewly Added
UCHAR RotationY; // Y rotation of
the effect
UCHAR RotationZ; // Z rotation of
the effect
UCHAR Scale; // Scale value
UCHAR Alpha; // Alpha
transparency value
UCHAR zAlign; // Always Zero
(Alignment byte)
} Sce eff set3;
This bytecode sets the specified effect with the given
properties.

From:

https://www.classicremodification.com/ - Classic RE Modification

Permanent link:

https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

Last update: 2024/08/03 00:53

https://www.classicremodification.com/

Printed on 2026/02/14 06:49

https://www.classicremodification.com/
https://www.classicremodification.com/doku.php?id=re2_opcodes&rev=1722671618

	!!SECTION UNDER CONSTRUCTION!!

